Teacher Companion Book

EVS - I (Science)

Name of teacher: \qquad

Section(s) taught

Class 5

Part 1

Annual Academic
Calendar

Curic ulum to Leaming Objectives

Vision-to-Action Plans

Exit
Assessments

classklap $\begin{gathered}\text { asuber } \\ \text { Because no two students } \\ \text { are the same. }\end{gathered}$

ClassKlap Program is India's only customised content and educational assessment program.

Workshops

ClassKlap Program hasconducted teacher tra ining workshops for more than 75,000+teachers.

Copyright © 2023 CLASSKLAP PVT. LTD.

This book is sold subject to the condition that it shall not, by way of trade orotherwise, be lent, resold, hired our or circulated in any form, without the publisher's prior, written consent.
All rights reserved. No part of this publication, including but not limited to, the content, the presentation layout, session plans, themes, key type of sums, mind maps and illustrations, may be reproduced, stored in a retrieval system or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording or otherwise), without the prior, written permission of the copyright owner of this book.
This book is meant foreducational and leaming purposes. The author(s) of the book has/ have taken all reasonable care to ensure that the contents of the book do not violate any copyright or other intellectual property rights of a ny person in any manner whatsoever. In the event the author(s) has/ have been unable to track any source and if any copyright has been inadvertently infringed, please notify the publisher in writing for any corrective action.
Some of the images used in the books have been taken from the following sources
www.freepik.com, www.vecteezy.com, www.clipartpanda.com Creative Commons Attribution
Published by: CLASSKLAP PVT. LTD.
Plot no. $2 / 5$ S.S.S Nagar, West Maredpally,
Secunderabad, Telangana - 500026, India
This book is part of a package of books and is not meant to be sold separately. For MRP, please refer to the package price.

Contents

	Section No./Name	Sub-section	Sub-section Name	Pg.No.
	I - Remembering and Understanding (To be read and understood before the first teaching day and to be revisited during thePSV1)	1	Textbook Features	3
		2	Workbook Features	4
		3	Pedagogical Plan - Explainer	5
		4	Teaching Strategies	8
		5	Graphic Organisers (Blackboard Information Organising Tips)	16
		6	Bloom's Taxonomy in Class	26
	II - Application (To be planned and worked out before the academic year starts)	7	Annual Academic Calendar and Planning Tool	27
		8	Assessment Patterns	30
		9	Teaching Aids List (For Planning)	40

	III - H.O.T.S.: Creating a Rockstar Class (Together, with our inputs and your unique approach and implementation style, let us create a rockstar classroom)	10a	Day-wise Lesson Plan: A- Curriculum to Learning Objectives	43
		10b	Day-wise Lesson Plan: B-Vision to Action Plan	
		10c	Day-wise Lesson Plan: Content Page	
		10d	Day-wise Lesson Plan: C- Exit Assessment	
		10e	Teacher Reference for Textbook	
		10f	Teacher Reference for Workbook	
		11	Art Integrated Learning - Activities	135
		12	How to Create an Effective Learning Environment	149
		13	End-of-Term Reflection	151

Pedagogical Plan - Explainer

Indic the c		Knowledge that learners are expected to have in order to understand the concept better. This is acquired from the previous lessons or classes.			Indicates the lesson name
		A-Curriculum to Learning Objectives: My Body			
Knowledge		- differertt parts of the body and its functions, how to take care of the parts of the body			
Class	L. No.	Lesson Name	L. obj. No.	Learning objectives	
3	3	Organ Systems	3.a	- organs inside the body	
			3.b	- different organ systems and their parts	
			${ }^{3} .6$	- the effect of daily activities on organ syste	
			$3 . \mathrm{d}$	- the position of different organs inside the	
3	4	Skeletal System	4.3	- the skeleala ssstem	
			4.6	- the functions of the skleletal system	
			4.6	- keeping our bones healthy	
			4.d	- the skeletal system in animals	
4	2	Digestive System	2.8	- digestion and the digestive system	
			2.6	- the process ofd digestion	
			2.6	- the importance of the digestive system	
			$2 . \mathrm{d}$	- hunger and famine	
4	3	Excretor System	3.a	- excretion and the excretory system	
			3.b	- the process of excretion	
			${ }^{3} \mathrm{c}$	- the importance of the excretor system	
			3.d	- kidney stones	
5	1	Muscular System	1.a	- muscles and the muscular ssstem	
			1.6	- the functions of our muscles	
			1.6	- keeping our muscles heathy	
			1.d	- injuries related tomuscles	
5	2	Respirator System	2.0	- respiration and the respratorory sstem	
			$2 . \mathrm{b}$	- steps of respiration	
			2.6	- breathing rate and how blowing air can wa	or cool down things
			2.d	- the importance of a stethoscope	
5	3	Nerous System	3.9	- parts of the nervous system	
			3.6	- working of the nervous system	
			${ }_{3} .6$	- role of our sense organs	
			3.d	- how the brain works with closed eyes	

> Indicates how the concept taught is related to concepts covered in the previous, current and next class(es)

LIST OF ABBREVIATIONS USED

- L. No. - Lesson number
- KC No. - Key concept number
- TB-Textbook
- WB - Workbook
- THK - Think
- REM - Remembering
- UND - Understanding
- APP - Application
- AF - Amazing Facts
- HOTS/H.O.T.S. - Higher Order Thinking Skills
- ITL - Inside the Lab
- CW/HW - Classwork \& Homework
- PSV - Program Success Visit
- RS - Revise Smart
- PTM - Parent Teacher Meeting
- FA - Formative Assessment
- SA - Summative Assessment

Teaching period for each lesson and the actual date on which the chapter is taught				Indicates the textbook page numbers and key competency covered on each teaching period				The class level outcomes or enabling objectives for the period	
									Teaching strategies
	B - Vision-to-Action Plan: 3 Organ Systems								for the period
Period and Planned Date\qquad	$\begin{array}{\|c} \text { TB Page No. } \\ \text { and Key } \\ \text { Competency } \end{array}$	$\begin{aligned} & \text { L.obj. } \\ & \text { No. } \end{aligned}$	Learning Outcome(s)	TeachingStrategies Strategies	Resources	Practice		Areas to Focus	The list of teaching resources to be procured/arranged before the class
						cw	Hw		
Do/mm/mm	$\begin{gathered} \text { 9, 10-- } \\ \text { THK, REM } \end{gathered}$	3.a	- Define 'organ' - Name the important organs inside our body	- Interactive	- IMAX Chart 'OIgans and Oran Systems of the Human Body' Ben	$\begin{aligned} & \text { WB: Pg. } 11 \\ & \text { (Q. } 1-3 \text {) } \end{aligned}$	WB: Pg. 11 (Q. $4-6$)		
$\begin{array}{\|c\|} 2 \\ \hline D / M M / M Y Y \\ \hline \end{array}$	${ }_{\text {REM }}^{10-}$	3.a	- Define 'organ system' - List the important organ systems inside our body	- Interactive	- IMAX Chart 'Organs and Organ Systems of the tuman Body'	$\begin{aligned} & \text { we: Pg. } 122 \\ & { }_{\text {Qa: }} \end{aligned}$	\longleftarrow		The suggested CW/HW for the teaching period
$\begin{gathered} 3 \\ \hline \text { DO/MM/mer } \end{gathered}$	$\begin{gathered} 10,11- \\ \text { UND } \end{gathered}$	3.b		- Real-life Connect	- IMAX Chart 'Organs and Oran Systems of the Human Body'	$\begin{aligned} & \mathrm{W} \cdot \mathrm{P} \cdot \mathrm{Pg} .12 \\ & (\mathrm{Q} \cdot \mathrm{P}-12 \end{aligned}$	WB: Pgs. 12 (Q. 12-14)		Space for teacher's notes
${ }^{4}{ }^{4} / \mathrm{mm}$	$\stackrel{11-}{11-}$	3.6	- Interpret the effect of daily activities on the organ systems	- Real-life Connect	-	We: Pg. 13 (Q. 15, 16)	WB: Pg. 14 (Q. 17-19)		

Teaching Strategies

Interactive Discussion

Sample

Ask the following questions to check learners' previous knowledge.

- Where do insects live?
- Do they have their own house?

Introduce the topic social insects:

- Initiate a discussion on whether the learners have seen honeybees and ants.
- Ask if they move individually or in groups.
- Ask where have they seen them
- Ask if they know of any uses of ants and honeybees.

Explain social insects:

- Introduce the term 'social insects'.
- Use the 'Be Amazed' section to elaborate on how social insects live in colonies.
- List the uses of honey and beeswax.
- Mention how they can be kind to butterflies and honeybees

Use a graphic organiser to summarise:

- Use a Venn diagram (Refer to the Graphic Organisers on sub-section 5 of this book.) to list the uses of honeybees and insects.
- Show the overlap of uses and the individual uses of each of them clearly.

Real-life Connect

Sample

Learning outcome: Describe a few common birds seen in the surroundings, their features and eating habits

- Ask the following questions to connect learners to their real life:
- Name some birds you have seen in the school.
- Name some birds you have seen near your home.
- Let each child name two common birds.
- Discuss the following features.
- Size: small (e.g. sparrow), slightly big (e.g. crow), etc.
- Colour of the beak.
- Colour of the feathers.
- Knowledge about what they eat.
- Capture learners' responses on the blackboard in a table format.
- Relate it to the information given in the textbook.

Peer Learning (Group/Pair)

Sample

- Group learners into pairs.
- Write down the following questions on the blackboard.
- What happens when we walk/sit in places where there is a lot of dust/smoke? (Talk about breathing, dust on the body and so on)
- Why do some people wear masks while travelling?
- Let each group present two points for each of the questions.
- Write down all the relevant points on the blackboard under the heading, "Harmful effects of air pollution".

Outdoor Learning

Page 11

Reinforcement

Sample

- Draw a diagram of the hibiscus flower on the blackboard.
- Mislabel the parts.
- Ask learners individually to correct the labels.
- Name a few parts of the flower and let the learners draw them.
- Correct the responses to ensure that all learners can draw and label the parts of a flower.

Quiz

Sample

- Group learners into two teams.
- Conduct a quiz on food components and their sources. Ask questions such as:
- Which component is also known as 'energy bank'?
- Which vitamin is present in oranges and lemons?
- Give one example each for:
- energy giving food
- bodybuilding food
- protective food
- Categorise the following food items as energy giving, bodybuilding or protective:
- rice
- dal
- butter

Flipped Classroom

Sample

- Form 3 groups from the total strength of the class.
- Divide 'The adaptations in plants' into 3 topics: 'Adaptations of plants in deserts', 'Adaptations of plants in swampy areas', 'Adaptation of plants in coastal areas'.
- To each member of the group assign one of the topics.
- Give them the following table format with headings.

Habitat (Where the plants are found)	Examples of plants	Size of the leaf	Size of the plant	Features of the leaf (if it has thorns, is it slippery to touch and so on)

- Let each group present the information.
- Frame questions which will help the learners understand that the features of the plant they have observed are adaptations for its particular habitat.

Summarising

Note: Descriptions provided for samples of teaching strategies may vary from the content in the 'Transactional Tips' section of the lesson plan. Teachers need to plan on the same lines.

Graphic Organisers (Blackboard Information Organising Tips)

>Graphic organisers mostly use words or phrases and drawings at times. They help learners see and think about information in a more systematic and connected way.
$>$ Different organisers serve different functions. Describing processes, comparing, sequencing, arranging, showing relationships are some of the functions that graphic organisers have.
> Using these helps learners to process, store and recall information and discover new relationships.

Page 16

Mind map

Source: https://in.pinterest.com/pin/107101297358882191/

Sample blackboard illustration:

Page 17

Word splash

droplets form commonly glaciers circulates during comes places changes ground clouds Arctic cools earth seas form Antarctic come falls rivers oceans found rivers find different from hot cold sky Himalayas $\underset{\text { see ice }}{\text { from }}$
springs areas vapour farious turns cycle forms But goes rain snow available lakes sources saltwater region droplets ponds

> Makes learning terminology easier for learners
> Helps make connections
> Keywords discussed can be written on the board and learners can be asked to make the connections

KWL chart

Builds outcome orientation and help learners/teachers to organise information before, during and after a lesson/activity

TIP chart

Term	Information	Picture
Lever	A lever is a bar, rod or platform that can move about a fixed point.	Wheel and axle make work easier by reducing friction. A wheel helps things to move. The axle helps the wheel turn.

Helps learners to remember and understand complex terms with the help of pictures and information

Table

> Useful to note down information after discussions and clearly bring out points about different things from different perspectives
> Helps build modular thinking ability in learners

Planet	Key Feature	No. of Moons	Position from the Sun
Mercury	Smallest planet	Zero	$1^{\text {st }}$
Venus	---	---	---
Earth	---	---	---

Venn diagram

> Useful for remembering logical relationships between groups of things
> Can be used to indicate what is common and what is different between two things or groups of things

Source: http://www.learnnc.org/lp/pages/2646

Bubble diagram

Can be used to visualise the components of a concept along with their relative sizes, quantity and connections between them

Page 20

Star diagram

Can be used to describe the key points of a story or event using the 5Ws

Timeline

Useful to recall events in chronological order with dates

Timeline of evolution of transportation

3500 BC	2000 BC	1783 AD	1787 AD	1790 AD	1801 AD	1862 AD	1903 AD
Invention of the wheel and the boat	Domesticated animals such as horses and donkeys begin to carry burden	Invention of the hot air balloon	Invention of the steamboat	Invention of the bicycle	Invention of the steam locomotive	Invention of the automobile	Invention of the modern aeroplane

Process chart

Useful to represent and remember information that follows a particular sequence

Cycle chart

> Useful to represent and remember information that follows a particular sequence
> Both open-ended simple process or closed cycles can be used

Sample blackboard illustrations:

Tree diagram

Spider diagram

> Useful to represent and remember complex topics
> Useful to build connections within a concept or between concepts

Layered triangle/Pyramid

> Can be used to start with a broad topic and move to a more focussed or complex topic
> Can be used to start with a basic topic and move to a more evolved/complex topic

Bloom's Taxonomy in Class

Grade 5 Science 2 Part						
Part	Lesson No	Lesson Name	Teaching Days	Exam Syllabus		
				FA Coverage	SA Coverage	PA Coverage
1	1	Muscular System	5	FA1	SA1	PA1
1	2	Respiratory System	5	FA1	SA1	PA1
1	3	Nervous System	5	FA2	SA1	PA1
1	4	Floats, Sinks and Mixes	5	FA2	SA1	X
1		Inside the Lab - A Activity A1: Respiratory System Activity A2: Water as a Universal Solvent	2			
1	5	Fruits and Seeds	5	X	SA1	X
1	6	Plants and Environment	6	X	SA1	X
2	7	Food for Animals	3	FA3	SA2	PA2
2	8	Food Production	5	FA3	SA2	PA2
2	9	Forests as Shelter	4	FA4	SA2	PA2
2		Inside the Lab - B Activity B1: Seed Germination Activity B2: Food Web	2			
2	10	Space Travel	3	FA4	SA2	PA2
2	11	Wildfire	4	FA4	SA2	X
2	12	Cyclones and Floods	3	X	SA2	X
2	13	Earthquakes and Tsunami	3	X	SA2	X

Note: SA1=MYA, SA2=AA

Grade 5 Science 2 Part						
Part	Lesson No	Lesson Name	Teaching Days	Exam Syllabus		
		FA Coverage	SA Coverage	PA Coverage		
2	14	Simple Machines	3	X	SA2	X
2		Inside the Lab - C Activity C1: Simple Machine Activity C2: Catapult	2			

Annual Planning Tool for Teachers (to be filled as per Term/Semester)

Month	No of Working Days in School	Assessments (If Any)	Other NonTeaching Events if Any	No of Teaching Days in School	No of "Teaching Periods" based on the Subject Time-Table (Referred to as "Teaching Days" going forward)	Lesson/Concept List to be Covered	CK Teaching Days Total	Days Allocated for CK PRS	Buffer Days
Sample Month	20	Nont	operring PTM (2.Davi:	15	25	1.2,3	16	7	2
April									
May									
June									
July									
August									
September									
October									
November									
December									
January									
February									
March									

Assessment Blueprint - EVS-I - Beginner - FA_20M

Question Source	Summary
DIRECT	Direct questions from TB/WB
DIRECT PLUS	DIRECT questions with minor changes.
MODIFIED	DIRECT questions with changes in skill and/or question type
MODIFIED PLUS	MODIFIED questions with increased difficulty
TWISTED	NEP/BOARD question types based on TB/WB content

EVS-I - Class 5

			Beginner	Values
			20 M	
Section	Section Heading	Question Source	No. of Questions	Marks
A	Multiple Choice Questions	Direct	1	1
		DirectPlus	2	2
B		Modified	1	1
	Very Short Answer Questions	Direct	2	2
		DirectPlus	2	2
C	Modified	1	1	
	Short Answer Questions	Twisted	1	1
D		Direct	1	2
	Graphic Organiser	Modified	1	2
E	Long Answer Question	Direct		
	Modified		2	
Grand Total		DirectPlus		
		Modified	1	2

1. This exam blueprint is for reference only. Actual exam pattern may vary slightly.
2. In most cases, there is external choice for long answers type questions.

Assessment Blueprint - EVS-I - Beginner - PA_40M

EVS-I - Class 5

			Beginner	Values
			40M	
Section	Section Heading	Question Source	No. of Questions	Marks
A	Multiple Choice Questions	Direct	2	2
		DirectPlus	2	2
		Modified	3	3
		Twisted	1	1
B	Very Short Answer Questions	Direct	2	2
		DirectPlus	3	3
		Modified	6	6
		Twisted	1	1
C	Short Answer Questions	Direct	1	2
		DirectPlus	2	4
		Modified	2	4
D	Graphic Organisers	Direct	1	4
		Modified	1	2
E	Long Answer Questions	Direct	1	0
		DirectPlus	1	4
Grand Total			29	40

1. This exam blueprint is for reference only. Actual exam pattern may vary slightly.
2. In most cases, there is external choice for long answers type questions.

Assessment Blueprint - EVS-I - Beginner - MYA/AA_40M

EVS-I - Class 5

			Beginner	
			40 M	
Section	Section Heading	Question Source	No. of Questions	Marks
A	Multiple Choice Questions	Direct	2	2
		DirectPlus	3	3
		Modified	2	2
		Twisted	1	1
		Dery Short Answer Questions	Direct	4
C		Modified	2	4
	Graphic Organiser	Modified	5	2
	Short Answer Questions	Direct	1	5
		DirectPlus	1	2
		Modified	3	2
E	Diagram Based Question	Modified	1	2
	Long Answer Questions	Direct	1	4
		Modified	1	4
			1	0
		29	40	
Grand Total				

1. This exam blueprint is for reference only. Actual exam pattern may vary slightly.
2. In most cases, there is external choice for long answers type questions.

Assessment Blueprint - EVS-I - Beginner - MYA/AA_50M

EVS-I - Class 5

			Beginner	
			50 M	
Section	Section Heading	Question Source	No. of Questions	Marks
A	Multiple Choice Questions	Direct	1	1
		DirectPlus	3	3
B	Very Short Answer Questions	Direct	4	4
		DirectPlus	5	6
		Modified	5	6
C	Graphic Organisers	Modified	2	4
D	Short Answer Questions	Direct	2	4
		DirectPlus	3	6
E	Long Answer Questions	Direct	4	8
		DirectPlus	1	4
		Modified	1	0
Grand Total			2	4

1. This exam blueprint is for reference only. Actual exam pattern may vary slightly.
2. In most cases, there is external choice for long answers type questions.

Assessment Blueprint - EVS-I - Beginner - MYA/AA_80M

EVS-I - Class 5

			Beginner	
			80 M	
Section	Section Heading	Question Source	No. of Questions	Marks
A	Multiple Choice Questions	Direct	4	4
		DirectPlus	4	4
		Modified	1	1
		Twisted	1	1
B	Very Short Answer Questions	Direct	5	5
		DirectPlus	7	8
		Modified	5	5
C	Graphic Organisers	Modified	2	4
D	Short Answer Questions	Direct	6	12
		DirectPlus	5	10
		Modified	4	8
E	Diagram Based Questions	Twisted	1	2
F	Long Answer Questions	Direct	2	8
		DirectPlus	1	0
		Modified	1	0
Grand Total			2	8
		$\mathbf{5 1}$	$\mathbf{8 0}$	

1. This exam blueprint is for reference only. Actual exam pattern may vary slightly.
2. In most cases, there is external choice for long answers type questions.

Assessment Blueprint - EVS-I - Proficient - FA_20M

EVS-I - Class 5

			Proficient	Values
			20 M	
Section	Section Heading	Question Source	No. of Questions	Marks
A	Multiple Choice Questions	DirectPlus	1	1
		ModifiedPlus	1	1
B	Very Short Answer Questions	Twisted	2	4
		DirectPlus	2	2
C	Short Answer Questions	ModifiedPlus	2	2
D	Long Answer Questions	DirectPlus	2	4
	Modified	1	4	
Grand Total		ModifiedPlus	1	4

1. This exam blueprint is for reference only. Actual exam pattern may vary slightly.
2. In most cases, there is external choice for long answers type questions.

Assessment Blueprint - EVS-I - Proficient - PA_40M

EVS-I - Class 5

			Proficient	Values
			40M	
Section	Section Heading	Question Source	No. of Questions	Marks
A	Multiple Choice Questions	DirectPlus	2	2
		ModifiedPlus	2	2
		Twisted	2	4
B	Very Short Answer Questions	Direct	1	1
		DirectPlus	4	4
		Modified	1	1
		ModifiedPlus	4	4
C	Short Answer Questions	DirectPlus	4	8
		Modified	1	2
		ModifiedPlus	2	4
		Twisted	1	2
D	Diagram Based Question	Modified	1	2
E	Long Answer Questions	Modified	1	0
		ModifiedPlus	1	4
Grand Total			27	40

1. This exam blueprint is for reference only. Actual exam pattern may vary slightly.
2. In most cases, there is external choice for long answers type questions.

Assessment Blueprint - EVS-I - Proficient - MYA/AA_40M

EVS-I - Class 5

			Proficient	lalues
			40M	
Section	Section Heading	Question Source	No. of Questions	Marks
A	Multiple Choice Questions	DirectPlus	2	2
		ModifiedPlus	2	2
		Twisted	2	4
B	Very Short Answer Questions	Direct	1	1
		DirectPlus	4	4
		Modified	1	1
		ModifiedPlus	4	4
C	Short Answer Questions	DirectPlus	4	8
		Modified	1	2
		ModifiedPlus	2	4
		Twisted	1	2
D	Diagram Based Question	Modified	1	2
E	Long Answer Questions	Modified	1	0
		ModifiedPlus	1	4
Grand Total			27	40

1. This exam blueprint is for reference only. Actual exam pattern may vary slightly.
2. In most cases, there is external choice for long answers type questions.

Assessment Blueprint - EVS-I - Proficient - MYA/AA_50M

EVS-I - Class 5

			Proficient	34
			50M	
Section	Section Heading	Question Source	No. of Questions	Marks
A	Multiple Choice Questions	DirectPlus	2	2
		ModifiedPlus	2	2
		Twisted	3	5
B	Very Short Answer Questions	Direct	1	1
		DirectPlus	6	6
		ModifiedPlus	3	3
		Twisted	1	1
C	Short Answer Questions	Direct	1	2
		DirectPlus	4	8
		Modified	2	4
		ModifiedPlus	2	4
		Twisted	1	2
D	Diagram Based Question	Modified	1	2
E	Long Answer Questions	Modified	3	4
		ModifiedPlus	1	4
Grand Total			33	50

1. This exam blueprint is for reference only. Actual exam pattern may vary slightly.
2. In most cases, there is external choice for long answers type questions.

Assessment Blueprint - EVS-I - Proficient - MYA/AA_80M

EVS-I - Class 5

			Proficient	Values
			80M	
Section	Section Heading	Question Source	No. of Questions	Marks
A	Multiple Choice Questions	DirectPlus	3	3
		ModifiedPlus	4	4
		Twisted	5	7
B	Very Short Answer Questions	Direct	1	1
		DirectPlus	6	6
		Modified	3	3
		ModifiedPlus	7	7
		Twisted	1	1
C	Graphic Organiser	Modified	2	4
D	Short Answer Questions	Direct	1	2
		DirectPlus	6	12
		Modified	3	6
		ModifiedPlus	4	8
		Twisted	1	2
E	Diagram Based Question	Modified	1	2
F	Long Answer Questions	DirectPlus	2	4
		Modified	4	8
Grand Total			54	80

1. This exam blueprint is for reference only. Actual exam pattern may vary slightly.
2. In most cases, there is external choice for long answers type questions.

Teaching Aids List (For Planning)

Types of Teaching Aids	Names of the Teaching Aids	Lessons Used in
K V 0$]$ V \square Resources	Chart 'The Muscular system'	1) Muscular System
	Chart 'The Respiratory System'	2) Respiratory System
	Chart 'Our Senses and the Nervous System'	3) Nervous System
Learners to bring	a balloon, sticky tape or string	1) Muscular System
	different types of seeds	5) Fruits and Seeds
Teacher to arrange	stopwatch, stethoscope	2) Respiratory System
	placards (sender, postman, receiver and scooter, brain, nerves, organ/body part, spinal cord)	3) Nervous System
	a glass of water, sugar, two glasses, water, ink or neel, paper, piece of chalk, cooking oil, salt, three glasses, hot water, cold water, normal water, spoon	4) Floats, Sinks and Mixes
	three balloons, scissors, knife, large plastic bottle, two straws (that can be bent), clay and rubber band, duct tape	Activity A1
	four glasses of clean water, spoons, baking soda, pepper, flour, soap	Activity A2
	A4 sheets, sprouted seeds	5) Fruits and Seeds
	A4 sheets, video of an insectivorous plant trapping insects, chart papers cut to resemble flash cards	6) Plants and Environment
Storyweaver resources	Avani and the pea plant, Let's go seed collecting	5) Fruits and Seeds

Teaching Aids List (For Planning)

Types of Teaching Aids	Names of the Teaching Aids	Lessons Used in
	7) Food for Animals	
	A4 sheets, colouring material	8) Food Production
	A4 sheets, colouring material	9) Forests as Shelter
	bean seeds (15-20 per bowl), five clean and empty beakers (one for each condition), paper towels, water to wet the towels, masking tape to label the beakers	Inside the Lab - B1
	scissors, gum, chart papers, pictures of different plant or plant parts such as grass, vegetables, fruits, cereals, pulses and so on, pictures of animals (Example: earthworm, grasshopper, rabbit, deer, elephant, wolf, lion, tiger, eagle, frog, fish, snake, hen, crow, crane, duck, squirrel, cow, cat, dog, mouse, human being)	Inside the Lab - B2
	candle, matchstick, glass to cover the candle	
	glass of water, spoon, few small-sized seeds	11) Wildfire
	few cardboard pieces, few pencils, pens, erasers, sharpener, thin plastic tray	13) Earthquakes and Tsunami
	popsicle sticks, wooden blocks, glue	14) Simple Machines
	one brick per group, 10 pencils per group	Inside the Lab - C1
	nine craft sticks or ice cream sticks, six good quality rubber bands, one plastic spoon	Inside the Lab - C2
Storyweaver		
	Who Ate All That Up?	7) Food for Animals
	Ammachi's Amazing Machines	14) Simple Machines

A - Curriculum to Learning Objectives: My Body				
Prior Knowledge		- parts of the body and their functions, how to take care of different parts of the body		
Class	L. No.	Lesson Name	L. Obj. No.	Learning Objectives
3	3	Organ Systems	3.a	- organs inside the body
			3.b	- different organ systems and their parts
			3.8	- the effect of daily activities on organ systems
			3.d	- the position of different organs inside the body
3	4	Skeletal System	4.a	- the skeletal system
			4.b	- the functions of the skeletal system
			$4 . c$	- keeping our bones healthy
4	2	Digestive System	2.a	- digestion and the digestive system
			2.b	- the process of digestion
4	3	Excretory system	3.9	- excretion and the excretory system
			3.6	- the process of excretion
4	4	Diseases	4.a	- diseases and prevention
			4.b	- types of diseases
			4.c	- the prevention of various types of diseases
			4.d	- epidemics
5	1	Muscular System	1.a	- muscles and the muscular system
			1.b	- the functions of our muscles
			$1 . \mathrm{c}$	- keeping our muscles healthy
			1.d	- injuries related to muscles
5	2	Respiratory System	2.a	- respiration and the respiratory system
			2.b	- steps of respiration
			$2 . \mathrm{c}$	- breathing rate and how blowing air can warm up or cool down things
			2.d	- the importance of a stethoscope
5	3	Nervous System	3.a	- parts of the nervous system
			3.6	- working of the nervous system
			$3 . \mathrm{c}$	- role of our sense organs
			3.d	- how the brain works with closed eyes

B - Vision-to-Action Plan: 1 Muscular System								
Period and Planned Date	TB Page No. and Key Competency	L. Obj No.	Learning Outcome(s)	Teaching Strategies	Resources	Practice		Areas to Focus
						CW	HW	
1 DD/MM/YYYY	$\begin{gathered} 1,2- \\ \text { THK, REM } \end{gathered}$	1.a	- Define 'muscles' and 'muscular system' - List the different types of muscles	- Real-life Connect	- chart 'The Muscular System'	WB: Pg. 1 (Q. 1-4)	WB: Pg. 1 (Q. 5-7) Ask a learner to bring a balloon, sticky tape or string for the next class.	
$\stackrel{2}{D D / M M / Y Y Y Y}$	$\begin{gathered} 2- \\ \text { UND } \end{gathered}$	1.b	- Demonstrate the spring-like action of muscles during movement	- Real-life Connect	- a balloon - sticky tape or string	-	-	
3 DD/MM/YYYY	$\begin{gathered} 3- \\ \text { UND } \end{gathered}$	1.b	- Describe the functions of muscles	- Interactive Discussion	-	WB: Pg. 2 (Q. 8-13)	$\begin{aligned} & \text { WB: Pg. } 2 \\ & \text { (Q. 14) } \end{aligned}$	
4 DD/MM/YYYY	$\begin{gathered} 3,4- \\ \text { APP, AF } \end{gathered}$	1.6	- Identify the practices that keep muscles healthy and strong	- Interactive Discussion	-	$\begin{aligned} & \text { WB: Pg. } 3 \\ & \text { (Q. 15, 16) } \end{aligned}$	WB: Pg. 3 (Q. 17-19)	

| Period and
 Planned Date | TB Page No.
 and Key
 Competency | L. Obj.
 No. | Learning Outcome(s) | Teaching
 Strategies | | Resources | Practice | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Areas to Focus

Annual Day:
$1 / 33$
$1 / 5$
Day:

Important Words

Duration: 1 min

- Today: muscles, muscular system, skeletal muscle, smooth muscle, cardiac muscle

Transactional Tip(s)

Duration: $\mathbf{2 7}$ min

Real-life Connect :

- Read aloud the 'Think' section and ask learners about the term 'muscles'.
- Demonstrate the activity on pg. 1 of the textbook in the 'Remembering' section. Let the learners try out the activity. Ask the learners, "Can you feel a soft and spongy material inside? Can you feel some movement inside your upper arm?"
- Show the Classklap chart 'The Muscular System' and elaborate on muscles and the muscular system.
- Show the images of three types of muscles given on pg. 2 of the textbook. Use a tree diagram to describe the types of muscles and their features.

Annual Day:Day: $2 / 33$ $2 / 5$ Actual Date:
Page(s)
2

Important Words
Duration: 1 min

- Last class: muscles, muscular system, skeletal muscle, smooth muscle, cardiac muscle
- Today: fist, tighten, loosen, movement

Transactional Tip(s)

Real-life Connect :

- Ask the learners, "Why do we have muscles in our body?"
- Guide the learners to perform the 'Try this' activity given on pg. 2 of the textbook.
- Show the images of 'muscles becoming tight and loose' given on pg. 2 of the textbook to explain the spring-like movement of muscles that help in body movements.
- Tie or attach a partially inflated balloon on the inside of the arm. Demonstrate by moving your arm to explain the tightening of the muscle by showing the compressed balloon. Explain that the muscle loosens when the arm is moved back by showing the inflated balloon

Class Pulse Check

Duration: 2 min

1) How do muscles help in movements?
2) What is the main function of the muscular system?

Annual Day:
$3 / 33$
$3 / 5$
:---:
Actual Date:
3

The muscles attached to the
bones help in movements
of hands, legs and so on.
Example: walking, running,

writing and so on \begin{tabular}{l}
Muscles around the lungs (the rib

cage muscles and a dome-shaped

muscle at the base of the chest

cavity) help in breathing. When

these muscles contract and relax,

air flows in and out of the lungs.

Did you know that your

lips and tongue are made

up of muscles too? These

muscles help us while

talking and eating.

\quad

Muscles help us to maintain body posture.

They help to keep us upright and erect.

help the heart to

pump blood.
\end{tabular}

te
 Application

Muscles are an important part of our body, so they should be healthy. Healthy food and regular exercise make the muscles stronger and healthier.
We should follow these practices to keep our muscles healthy and strong:

1) Warm up \rightarrow exercise \rightarrow cool down: Exercise for 15-20 minutes every day. Warm up the different body parts with a brisk walk or a light jog before starting with exercise. After the exercise, let the body cool down slowly. Doing warm up before exercise prepares the body for the exercise. This is because the heart pumps more blood to the muscles. So, the chance of injury due to exercising is reduced

brisk walk

Important Words

Duration: 1 min

- Last class: fist, tighten, loosen, movement
- Today: pump, rib cage muscles, dome-shaped muscles, chest cavity, contract, relax, smooth muscles, postures, upright, erect, vibrate, rapidly, generate, shiver

Annual Day:Day: $4 / 33$ $4 / 5$ Actual Date:
Page(s)
4

2) Stretch: Stretch all body parts every day. It improves the strength of muscles.
3) Drink a lot of water: We should drink at least two litres of water every day. It keeps the muscles and other internal organs healthy.
4) Balanced diet: Our food helps our muscles strengthen, repair themselves and function properly. It is important to include all the nutrients like minerals and vitamins in our diet.

stretching all parts of body

를 Amazing Facts

Our heart muscles never get to rest. They work non-stop till we die!


```
Higher Order Thinking Skills (H.O.T.S.)
```

We often hear of sportspersons getting injured. Do you know that most of their injuries are related to muscles? Let us learn about some common muscle injuries.

1) Strain: When a muscle has
stretched too much, it causes muscle strain. For example, if we lift something too heavy like a big bucket of water, we might strain our muscle. It also happens when a muscle is used too much without rest. The treatment for strain includes applying an ice pack to the affected area.

muscle strain in different parts of the body
2) Cramp: Sometimes a painful tightening of a muscle happens suddenly. This is a cramp. For example, if we play in warm or hot weather without drinking enough water, we get a cramp. It lasts from a few seconds to several minutes. It often occurs in the legs. Treatment for cramps is the massage of the affected area.

ice pack on sprained leg

cramp in leg

Annual Day:
$5 / 33$
:---:
$5 / 5$
:---:
5

Important Words

Duration: $1 \mathbf{m i n}$

- Last class: warm up, exercise, cool down, brisk walk, light jog, injury, stretch, balanced diet, strengthen
- Today: sportspersons, strain, muscle strain, treatment, ice pack, affected area, cramp, tightening, massage, bruises, object, bandage, hamstring injury

Transactional Tip(s)

Duration: $\mathbf{2 7}$ min

Real-life Connect :

- Ask the learners, "Have you ever felt a sudden pain in your legs while playing or while trying to lift something heavy? What did your parents or teacher do to help you get some relief? Have you ever heard or seen any sports person getting injured?"
- Show pictures of muscle injuries given on pg. 4, 5 of the textbook.
- Describe strain, cramp and bruises and the treatment options.
- Show the image of hamstring muscles on pg. 5 of the textbook and explain about the hamstring injury.

Class Pulse Check

Duration: 2 min

1) What is the cause of muscle strain?
2) What is a cramp?

P C - Exit Assessment			
	Suggested questions to test the learning objective(s)	Learning objective(s)	Number of learners who answered correctly
1	How many types of muscles are there? (Ans. three)	Period 1 - muscles and the muscular system	
2	Name the type of muscles that help in the movement and digestion of food. (Ans. smooth muscles)	Period 3 - the functions of our muscles	
3	Tell one benefit that muscles get from exercising. (Ans. exercise helps heart to pump more blood to the muscles)	Period 4 - keeping our muscles healthy	
4	What are hamstrings? (Ans. they are a group of leg muscles)	Period 5 - injuries related to muscles	

Page 51
Lesson 1: Muscular System

Think
 1) While playing kabaddi with friends, Raghav injured his hand. His mother took him to a fracture. Raghav wondered what a muscle is and how it looked. Do you know about muscles?
 Ans. Muscles are the soft material under the skin. They help in movement by becoming tight and loose. They also maintain body posture and help in the digestion of food.

Do you know what a hamstring injury is? Find out.

Higher Order Thinking Skills (H.O.T.S.)

A hamstring is a group of muscles in the back of our thigh. It allows us to bend our leg at
the knee. A hamstring injury is a strain or tear to these large muscles. It happens during
activities that involve a lot of running and jumping or sudden jerking movements.
\%

Page 52
Page 53

$[$
$[$
$[$
$[$

Understanding

True or False (Weart musc les help the heart to pump blood.
8)
10) The main function of the muscular system is digestion of food.
11) Skeletal muscles help in movements of hands and legs.

Short Answer Questions

12) What are our lips and tongue made of? How do they help us?
Ans. Ourlips and tongue are made of muscles. They help us in talking and eating.

[^0]generate body heat. Hence, we shiver.

Page 54

Application

젼

Page 55
Higher Order Thinking Skills (H.O.T.S.)

A - Curriculum to Learning Objectives: My Body				
Prior Knowledge		- parts of the body and its functions, taking care of different parts of the body		
Class	L. No.	Lesson Name	L. Obj. No.	Learning Objectives
3	3	Organ Systems	3.a	- organs inside the body
			3.b	- different organ systems and their parts
			$3 . \mathrm{c}$	- the effect of daily activities on organ systems
			3.d	- the position of different organs inside the body
3	4	Skeletal System	4.b	- the functions of the skeletal system
4	3	Excretory System	3.b	- the process of excretion
			$3 . \mathrm{c}$	- the importance of the excretory system
5	1	Muscular System	1.a	- muscles and the muscular system
			1.b	- the functions of our muscles
5	2	Respiratory System	2.a	- respiration and the respiratory system
			2.b	- steps of respiration
			2.c	- breathing rate and how blowing air can warm up or cool down things
			2.d	- the importance of a stethoscope
5	3	Nervous System	3.2	- parts of the nervous system
			3.b	- working of the nervous system
			3.c	- role of our sense organs
			3.d	- how the brain works with closed eyes

B - Vision-to-Action Plan: 2 Respiratory System								
Period and Planned Date	TB Page No. and Key Competency	L. Obj. No.	Learning Outcome(s)	Teaching Strategies	Resources	Practice		Areas to Focus
						CW	HW	
$\begin{gathered} 1 \\ D D / M M / Y Y Y Y \end{gathered}$	$6,7-$ THK, REM	2.a	- Define 'respiration' and 'respiratory system' - Name various parts of the respiratory system	- Interactive Discussion	- chart 'The Respiratory System'	$\begin{aligned} & \text { WB: Pg. } 5 \\ & \text { (Q. 1-4) } \end{aligned}$	WB: Pg. 5 (Q. 5-7)	
$\begin{gathered} 2 \\ D D / M M / Y Y Y Y \end{gathered}$	$7 \text { - }$ UND	2.b	- Describe the steps involved in the process of breathing	- Interactive Discussion	- chart 'The Respiratory System'	$\begin{aligned} & \text { WB: Pgs. 5, } 6 \\ & \text { (Q. 8-11) } \end{aligned}$	WB: Pg. 6 (Q. 12-14)	
$\begin{gathered} 3 \\ D D / M M / Y Y Y Y \end{gathered}$	$\begin{gathered} 7,8- \\ \text { APP } \end{gathered}$	2.c	- Describe breathing rate - Identify the factors that affect the breathing rate of a person	- Real-life Connect	- stopwatch	WB: Pg. 7 (Q.15, 16)	$\begin{aligned} & \text { WB: Pg. } 7 \\ & \text { (Q. 17, 18) } \end{aligned}$	
4 DD/MM/YYYY	$\begin{gathered} 8- \\ \text { APP, AF } \end{gathered}$	2.c	- Conclude that blowing air can warm up or cool down things	- Interactive Discussion	-	-	WB: Pg. 7 (Q. 19)	

Period and Planned Date	TB Page No. and Key	L. Obj. No.	Learning Outcome(s)	Teaching Strategies	Resources	Practice		Areas to Focus
						CW	HW	
5 DD/MM/YYYY	$\begin{gathered} 8- \\ \text { HOTS } \end{gathered}$	2.d	- Analyse the uses of a stethoscope	- Interactive Discussion - Quiz	- stethoscope	-	$\begin{aligned} & \text { WB: Pg. } 8 \\ & \text { (Q. 20) } \end{aligned}$	

Annual Day:
$6 / 33$
$1 / 5$
:---:
6

C. Remembering

Have you ever noticed someone breathe? What does the person do? He or she breathes in and breathes out. This continues throughout the day
Taking in oxygen from the air and giving out carbon dioxide is called respiration.
The organ system that helps in respiration is called the respiratory system.
This system has the following parts:

1) A nose with a pair of openings called nostrils

Important Words

Duration: 1 min

- Today: oxygen, respiration, organ system, respiration, respiratory system, carbon dioxide, nostrils, windpipe, trachea, lungs, sac-like, rib cage, elastic, diaphragm, domelike

Transactional Tip(s)

Duration: $\mathbf{2 7}$ min

Interactive Discussion:

- Ask the learners to hold a finger under their nose for some time (Activity from the 'Think' section).
- Ask them, "What do you feel on your finger? What do you do while breathing? Do you breathe continuously or for a short time only?"
- Collect responses on the blackboard. Define 'respiration' and the 'respiratory system'.
- Describe the structure and position of the various parts of the respiratory system using the Classklap chart 'The Respiratory System'.

Class Pulse Check

1) What do we call the process of taking in oxygen and giving out carbon dioxide?
2) What are the openings in the nose called?

Annual Day:
$7 / 33$
$2 / 5$
:---:
7

2) Windpipe (Trachea)

3) A pair of lungs: The sac-like lungs are located in the chest. They are protected by the rib cage. They occupy most of the space in the chest. Both lungs are not of the same size. The left lung is smaller than the right.
4) An elastic diaphragm: It is a dome-like muscle below the lungs. It separates the lungs from the stomach and intestine.

the human respiratory system

图

Understanding

How does respiration take place?
There are two main steps of respiration:

1) breathing in (inhale) oxygen into the lungs
2) breathing out (exhale) carbon dioxide from the lungs The diaphragm has an important role. Breathing in and breathing out happen due to the up and down movement of the diaphragm. It moves down to take in oxygen. It moves up to release the carbon dioxide from the lungs.

Application

BREATHING RATE

Place your hands on your chest as you breathe. What is the pace of your breathing? Now stand and jump for five minutes. Keep your hands again on your chest. You are breathing hard and fast now. Why does this happen?

We need to breathe because we need oxygen for many of our body functions. When we run, jump or play, we need more oxygen. So we breathe faster than usual.
According to the difficulty level of the activity, the number of times we breathe also increases. The faster we move, the faster we breathe.

running makes us breathe faster

Annual Day:
$8 / 33$
$3 / 5$
:---:
7

2) Windpipe (Trachea)

3) A pair of lungs: The sac-like lungs are located in the chest. They are protected by the rib cage. They occupy most of the space in the chest. Both lungs are not of the same size. The left lung is smaller than the right.
4) An elastic diaphragm: It is a dome-like muscle below the lungs. It separates the lungs from the stomach and intestine.

the human respiratory system

Understanding

How does respiration take place?
There are two main steps of respiration:

1) breathing in (inhale) oxygen into the lungs
2) breathing out (exhale) carbon dioxide from the lungs The diaphragm has an important role. Breathing in and breathing out happen due to the up and down movement of the diaphragm. It moves down to take in oxygen. It moves up to release the carbon dioxide from the lungs.

Application

BREATHING RATE

Place your hands on your chest as you breathe. What is the pace of your breathing? Now stand and jump for five minutes. Keep your hands again on your chest. You are breathing hard and fast now. Why does this happen?

We need to breathe because we need oxygen for many of ou body functions. When we run, jump or play, we need more oxygen. So we breathe faster than usual.
According to the difficulty level of the activity, the number of times we breathe also increases. The faster we move, the faster we breathe.

running makes us breathe faster

Annual Day:
$9 / 33$
$4 / 5$
:---:
8

> Usually, adults breathe about 18 times in a minute. Children breathe even faster. Count how many times you breathe in a minute.
> BLOWING AIR TO WARM UP OR COOL DOWN THINGS

Your mother has given you hot milk to drink. But you are getting late for school. What does she do? She blows into the glass of milk to cool it faster.
We blow to cool the hot food or drink. The air from the mouth is cooler than the food. So it cools down the food Does blowing always make things cold? Think, what will happen if you blow on an ice cream? Will it become colder? Try it.

Why is the woman in the picture blowing on the fire? Wood or fuels need air to burn. So, blowing into the fire

a woman blowing into a chulha makes the fire to burn faster and hotter.

Our body can withstand up to three weeks without food and one week without water. But, we can live only for three to four minutes without oxygen.

Higher Order Thinking Skills (H.O.T.S.)

Whenever we go to doctors, they keep a stethoscope on our chest. Then he or she asks us to take long breaths. Do you know why?

A stethoscope is an instrument used to hear sounds of heartbeats and breathing. Doctors use it to check the health of our body. Our breathing and heartbeats change when we are unwell.

Class Pulse Check
Duration: 1 min

1) What makes a fire hotter?

Important Words
Duration: 1 min

- Last class: breathing in, inhale, breathing out, exhale
- Today: blowing air, warm up, fuels, withstand up

Transactional Tip(s)

Duration: 28 min

Interactive Discussion:

- Ask the learners, "What do you do when the food or milk is too hot to consume? Why do people blow into their closed palms during cold weather?"
- Discuss with the learners how blowing air cools the hotter things and warms the things that are cold. Use the examples given on pg. 8 of the textbook to elaborate.
- Show the image of 'a woman blowing into a chulha' and ask them "Why is the woman in the picture blowing on the fire?" Note responses from the learners and explain how blowing air into the fire makes it burn faster.
- Describe the 'Amazing Facts' section given on pg. 8 of the textbook.

Annual Day:
$10 / 33$
$5 / 5$
:---:
Page(s)
8

> Usually, adults breathe about 18 times in a minute. Children breathe even faster. Count how many times you breathe in a minute.
> BLOWING AIR TO WARM UP OR COOL DOWN THINGS

Your mother has given you hot milk to drink. But you are getting late for school. What does she do? She blows into the glass of milk to cool it faster.
We blow to cool the hot food or drink. The air from the mouth is cooler than the food. So it cools down the food Does blowing always make things cold? Think, what will happen if you blow on an ice cream? Will it become colder? Try it.

Why is the woman in the picture blowing on the fire? Wood or fuels need air to burn. So, blowing into the fire

a woman blowing into a chulha makes the fire to burn faster and hotter.

Our body can withstand up to three weeks without food and one week without water. But, we can live only for three to four minutes without oxygen.

Higher Order Thinking Skills (H.O.T.S.)

Whenever we go to doctors, they keep a stethoscope on our chest. Then he or she asks us to take long breaths. Do you know why?

A stethoscope is an instrument used to hear sounds of heartbeats and breathing. Doctors use it to check the health of our body. Our breathing and heartbeats change when we are unwell.

Important Words

Duration: 1 min

- Last class: breathing rate, pace, body functions
- Today: stethoscope, long breaths, instrument, heartbeats, unwell

Transactional Tip(s)

Duration: $\mathbf{2 7}$ min
Quiz:

- Form groups of learners and conduct a quiz on all the topics learnt in the lesson.

Interactive Discussion:

- Ask the learners, "What does the doctor do during a checkup?" Drive the discussion towards the usage of the stethoscope.
- Display a stethoscope. Ask one learner to act as a doctor and check the breathing and heart rate of another learner. The learner acting as the doctor will inform the class about the sound of the heartbeat and breathing.
- Explain the uses of the stethoscope to the learners.

Class Pulse Check

Duration: $\mathbf{2}$ min

1) When do our breathing rate and heartbeats change?
2) What is a stethoscope?

	FCF - Exit Assessment		
	Suggested questions to test the learning objective(s)	Learning objective(s)	Number of learners who answered correctly
1	Correct the given sentence. Both the lungs are of the same size. (Ans. The right lung is bigger than the left one.)	Period 1 - respiration and the respiratory system	
2	What happens due to the upward movement of the diaphragm? (Ans. carbon dioxide is released from our lungs)	Period 2 -steps of respiration	
3	Say true or false: If we blow on an ice cream it will become colder. (Ans. false)	Period 4 - breathing rate and how blowing air can warm up or cool down things	
4	How can a stethoscope detect that we are unwell? (Ans. by detecting the change in our heartbeat and breathing rate)	Period 5 - the importance of a stethoscope	

Page 65
Lesson 2: Respiratory System

$$
\begin{aligned}
& \text { 1) Hold your finger under your nose. What do you feel on your fingers? } \\
& \text { Ans. We feel the movement of warm air. } \\
& \text { Application } \\
& \text { 1) Place your hands on your chest as you breathe. What is the pace of your breathing? } \\
& \text { Ans. Learner's response (Hint: It is 17-23 breaths per minute.) } \\
& \text { 2) } \begin{array}{l}
\text { Does blowing always make things cold? Think, what will happen if you blow on an ice } \\
\text { cream? Will it become colder? } \\
\text { Blowing will not always make things cold. Our breath is warmer than the ice cream. So, } \\
\text { when we blow on it, the layer of chilled air around the ice cream gets replaced with the } \\
\text { air from our mouth. Thus, the ice cream will melt when we blow on it. }
\end{array}
\end{aligned}
$$

Page 66
Page 67

Page 68

$=$
 뎐

 Multiple Choice Questions

 Multiple Choice Questions
 15) Which of the following activity will mostly make us breathe the fastest? $\begin{array}{llll}\text { (A) eating } & \text { (B) swimming } & \text { (C) sitting steady } & \text { (D) studying }\end{array}$
 16) Which of the following statements is correct?
 (A) Usually, adults breathe about 24 times in an hour.
 (B) Child ren breathe about 18 times in a minute.
 (C) Adults breathe about 18 times in a day.
 (D) Usually, adults breathe about 18 times in a minute.

Short Answer Questions
17) Why do we need to breathe?
Ans. We need to breathe because we need oxygen formany of our body functions.

18) Explain: The faster we move, the faster we breathe.
 Ans. According to the difficulty level of the activity, the speed of breathing also increases. Therefore, the faster we move, the faster we breathe.

Long Answer Question
19) What happens when we blow air on the following food items? Give reasons.
a) The hot food item will cool down because the air from the mouth is

WB: Respiratory System

Page 69

A - Curriculum to Learning Objectives: My Body				
Prior Knowledge		- parts of the body and its function, how to take care of different parts of the body		
Class	L. No.	Lesson Name	L. Obj. No.	Learning Objectives
3	3	Organ Systems	$3 . a$	- organs inside the body
			3.b	- different organ systems and their parts
			$3 . \mathrm{c}$	- the effect of daily activities on organ systems
			3.d	- the position of different organs inside the body
3	4	Skeletal System	4.a	- the skeletal system
			4.b	- the functions of the skeletal system
			$4 . \mathrm{c}$	- keeping our bones healthy
			4.d	- the skeletal system in animals
4	2	Digestive System	2.a	- digestion and the digestive system
			2.b	- the process of digestion
			$2 . \mathrm{c}$	- the importance of the digestive system
			2.d	- hunger and famine
4	3	Excretory System	3.a	- excretion and the excretory system
			3.b	- the process of excretion
			$3 . \mathrm{c}$	- the importance of the excretory system
			3.d	- kidney stones
5	1	Muscular System	1.a	- muscles and the muscular system
			1.b	- the functions of our muscles
			$1 . \mathrm{c}$	- keeping our muscles healthy
			1.d	- injuries related to muscles
5	2	Respiratory System	2.a	- respiration and the respiratory system
			2.b	- steps of respiration
			$2 . \mathrm{c}$	- breathing rate and how blowing air can warm up or cool down things
			2.d	- the importance of a stethoscope
5	3	Nervous System	3.a	- parts of the nervous system
			3.b	- working of the nervous system
			$3 . \mathrm{c}$	- role of our sense organs
			3.d	- how the brain works with closed eyes

B - Vision-to-Action Plan: 3 Nervous System								
Period and Planned Date	TB Page No. and Key Competency	L. Obj. No.	Learning Outcome(s)	Teaching Strategies	Resources	Practice		Areas to Focus
						CW	HW	
$\begin{gathered} 1 \\ \mathrm{DD} / \mathrm{MM} / \mathrm{YYYY} \end{gathered}$	$\text { 9, } 10 \text { - }$ THK, REM	3.a	- Define 'nervous system' - Describe the various parts of the nervous system	- Interactive Discussion	- chart 'Our Senses and the Nervous System'	WB: Pg. 9 (Q. 1-4)	$\begin{aligned} & \text { WB: Pgs. } 9,10 \\ & \text { (Q. 5-7) } \end{aligned}$	
2 DD/MM/YYYY	10, 11 -UND	3.b	- Demonstrate the working of the nervous system - Identify the functions of the brain	- Real-life Connect	- placards (sender, postman, receiver, scooter, brain, nerves, organ/body part, spinal cord)	WB: Pg. 10 (Q. 8-11)	$\begin{aligned} & \text { WB: Pgs. 10, } 11 \\ & \text { (Q. 12-14) } \end{aligned}$	
3 DD/MM/YYYY	$\begin{aligned} & 11- \\ & \text { APP } \end{aligned}$	$3 . \mathrm{c}$	- Identify the sense organs and their functions	- Interactive Discussion	-	WB: Pg. 11 (Q. 15)	$\begin{aligned} & \text { WB: Pg. } 12 \\ & \text { (Q 16, 17) } \end{aligned}$	
4 DD/MM/YYYY	11, 12 APP, AF	3.6	- Describe the coordination between the sense organs and the brain	- Interactive Discussion	- chart 'Our Senses and the Nervous System'	$\begin{aligned} & \text { WB: Pg. } 12 \\ & \text { (Q. 18, 19) } \end{aligned}$	-	

Period and Planned Date	TB Page No. and Key Competency	L. Obj. No.	Learning Outcome(s)	Teaching Strategies	Resources	Practice		Areas to Focus
					CW	HW		
5	12- HOTS	3.d	Conclude that the brain can identify objects even without the help of the eyes	Interactive Discussion	-	-	WB: Pg. 13 (Q. 20)	

Annual Day:
$11 / 33$
$1 / 5$
Day:

Important Words

Duration: 1 min

- Today: vessel, nervous system, brain, skull, spinal cord, backbone, nerves, spider's web

Transactional Tip(s)

Duration: $\mathbf{2 7}$ min

Interactive Discussion:

- Ask the learners, "What will happen if we touch or hold a hot vessel? How do we come to know that it is hot?"
- Drive the discussion to the point that our movements and responses are controlled by a system of organs called the nervous system.
- Introduce the nervous system as the control system by showing the Classklap chart 'Our Senses and the Nervous System'.
- Stress on the name of the organs, their location and functions in the nervous system using a tree diagram.

Class Pulse Check

Duration: 2 min

1) Name the three main organs of the nervous system.
2) What is the shape of the spinal cord?

Annual Day:
$12 / 33$
$2 / 5$
:---:
Actual Date:
10

1) The brain: The brain is located in the head. It is soft like jelly. It is covered and protected by the skull. The skull is very hard. It protects the brain. The brain manages the entire body, but weighs only about 1.5 kg .
2) The spinal cord: It is long and thin like a pipe. It starts from the lower part of the brain. It looks like a long tail of the brain. Along the way, nerves branch out from the spinal cord just like the branches of a tree from a tree trunk. The backbone encloses the spinal cord.

the human nervous system
3) Nerves: The nerves are like wires. They are spread in our entire body like a spider's web. They connect different body parts and organs to the spinal cord and to the brain.

Understanding
Our nervous system is like a postal service.
Through the given pictures, let us understand how the nervous system works:

1) Sender (any organ or body part) gives the message to the postman (nerves).
2) Postman takes the message (box) through the spinal cord (red scooter).
3) Postman gives the message to
with the message from the brain through the spinal cord.
 the brain. The brain reads these messages and decides what needs to be done. Accordingly, it gives messages in return. The brain tells what to do about the message.
4) The postman (nerves) returns

Annual Day:
$13 / 33$
$3 / 5$
:---:
Actual Date:
11

5) Nerves then give the message to the receiver (same or different organ or body part). Once the body parts receive the message, they do what the message asks them to do.
In our nervous system, the message can be about different parts of the body or about what is happening outside the body.
The brain is the control centre of the body. The brain talks to the entire body through the spinal cord and nerves. It tells our body 'what to do' and 'when to do it.'

All these steps take place at extremely high speed. This is why we can respond to things very fast. For example, when we see something in front of us, within a second we know what it is, how it looks like and how far or close it is.

```
A. Application
```

To control our body, the brain also needs to know what is happening outside our body. For example, when we walk, the brain needs to get the messages about the things in our way. How does the brain get these messages?
For this, the sense organs work along with the nervous system. Eyes, ears, nose, tongue and skin are the organs that help us to sense the things around us. With the help of these organs, we see, hear, smell, taste and feel the things around us.

Let us learn how these organs help us to sense with the help of the nervous system.

When an object comes in front of us, the eyes send this information to the brain through the nerves. The brain reads this message and tells us what object it is. That is how we see.

Similarly, if we smell or taste something, the nose and tongue send a message to the

five sense organs
brain through the nerves. Then, the brain tells us what kind of smell or taste it is. It also tells us whether the smell and taste are good or not.

In the same way, the skin helps us to feel heat-cold, the rough-smooth and so on. Ears help us to hear with the help of messages from the brain.

| Annual Day: |
| :---: | :---: |
| $14 / 33$ |
| $4 / 5$ |
| Actual Date: |
| Page(s) |
| 11 |

5) Nerves then give the message to the receiver (same or different organ or body part). Once the body parts receive the message, they do what the message asks them to do.
In our nervous system, the message can be about different parts of the body or about what is happening outside the body.
The brain is the control centre of the body. The brain talks to the entire body through the spinal cord and nerves. It tells our body 'what to do' and 'when to do it.'

All these steps take place at extremely high speed. This is why we can respond to things very fast. For example, when we see something in front of us, within a second we know what it is, how it looks like and how far or close it is.

```
A. Application
```

To control our body, the brain also needs to know what is happening outside our body. For example, when we walk, the brain needs to get the messages about the things in our way. How does the brain get these messages?
For this, the sense organs work along with the nervous system. Eyes, ears, nose, tongue and skin are the organs that help us to sense the things around us. With the help of these organs, we see, hear, smell, taste and feel the things around us.

Let us learn how these organs help us to sense with the help of the nervous system.

When an object comes in front of us, the eyes send this information to the brain through the nerves. The brain reads this message and tells us what object it is. That is how we see.

Similarly, if we smell or taste something, the nose and tongue send a message to the

five sense organs
brain through the nerves. Then, the brain tells us what kind of smell or taste it is. It also tells us whether the smell and taste are good or not.

In the same way, the skin helps us to feel heat-cold, the rough-smooth and so on. Ears help us to hear with the help of messages from the brain.

Annual Day:
$15 / 33$
$5 / 5$
Day:
Actual Date:
Page(s)
12

를 Amazing Facts

In the human body, the right side of the brain controls the left side of the body, while the left side of the brain controls the right side.

Higher Order Thinking Skills (H.O.T.S.)

You have learnt that the five different sense organs help the brain to sense the things around us. Our brain identifies objects when the eyes send messages to the brain. Can the brain identify objects even without the help of the eyes?
Let us do an activity.

1) Ask your parents, siblings or friends to keep different food items in different vessels. (This can be done in the classroom using the different tiffins during the lunch break.)
2) Close your eyes while they are putting these food items in the container.
3) Blindfold yourself.
4) Smell each food item. Try to identify it by its smell.
5) Try to guess the food by the feel of the food item.
6) If you could not find it out from the smell or feel, then taste it.
7) Make a note of how many food items you could

blindfolded child identifying food ilem identify.

From this activity, you will get to know that our brain can identify things with their smell, taste or feel (texture); even with our eyes closed.

Important Words
Duration: 1 min

- Last class: sense organs, sense, see, hear, smell, taste, feel
- Today: identifies, objects, siblings, container, blindfold, texture

Transactional Tip(s)

Interactive Discussion:

- Ask the learners, "Does your brain always identify objects with the help of your eyes? What about when your eyes are closed?"
- Perform the activity as given on pg. 12 of the textbook.
- Ask the learners, "What do you get to know from this activity?"
- Explain how the brain identifies objects even when our eyes are closed.

Class Pulse Check

1)

C ${ }^{\text {a }}$ - Exit Assessment			
	Suggested questions to test the learning objective(s)	Learning objective(s)	Number of learners who answered correctly
1	What is the weight of the human brain? (Ans. 1.5 kg)	Period 1 - parts of the nervous system	
2	How does the brain talk to the entire body? (Ans. through the spinal chord and nerves)	Period 2 - working of the nervous system	
3	How can you know if the milk in a glass is hot or cold before drinking it? (Ans. by touching the cup we will know whether it is hot or cold)	Period 4 - role of our sense organs	
4	If you are blindfolded, how can you identify a flower? (Ans. by its smell)	Period 5 - how the brain works with closed eyes	

Page 79

1) If we happen to touch or hold a hot vessel in our hand, what do we do? We let go of it
immediately.
How do we come to know that the vessel is hot and we should drop it?
Ans. Our sense of touch tells us if something is hot or cold. So, when our skin touches the hot
vessel, our senses tell us that it is hot and our brain tells us to let go of it quickly.
2) Our body is made up of organs which help us perform various functions. Do you think
they perform these functions on their own? How do we walk? How do our legs move to
walk?
Ans. The organs do not perform functions on their own. The brain controls the whole body and
instructs the organs what to do. We walk with the help of our legs. Before we begin to
move, the brain sends a signal to the nerves which control the coordination of the leg
muscles.
Lesson 3: Nervous System
Lesson 3: Nervous System
[^1]
Remembering

1) Our body is made up of organs which help us perform various functions. Do you think
Ans. The organs do not perform functions on their own. The brain controls the whole body an instructs the organs what to do. We walk with the help of our legs. Before we begin to move, the muscles.

Page 80

Page 81

Short Answer Question
7) Label the parts of nervous system in the given dia gram.

Ans. To control the body, the brain needs to know what is happening in different parts of
Page 82
13) Which parts of the nervous system help the brain in giving instructions to the organs?
Ans. The network of nerves a nd the spinal cord help the brain in giving instructions to the
Long Answer Question

$$
\begin{aligned}
& \text { 14) Complete the stepsto explain how the nervous system works. Use the images as hints. } \\
& \text { a) Any organ or part of the body givesthe message to the nerves. }
\end{aligned}
$$

Multiple Choice Questions
15) Name the sense organ from the following.

$\frac{\square}{\sigma}$

(C)
(B) hair (C) nail

11
 WB: Newous System

$\left.\left.\begin{array}{l}\text { 16) What helps usto feel if a thing is cold or hot? } \\ \begin{array}{llll}\text { (A) skin } & \text { (B) ear } & \text { (C) hair } & \text { (D) nail }\end{array} \\ \text { Short Answer Questions }\end{array}\right] \begin{array}{lll}\text { 17) } & \text { Which organs work together to make us sense something? }\end{array}\right]$
18) How do ears help us?
Ans. Ears capture the sounds and help us hear.
19) Look at the picture given below. Complete the sentences to show how the sense
a) The ears and the eyes send messagesto the brain through the nerves.
b) The brain readsthe messages.
c) It identifies the sound and the object.
d) It tells the ears what the sound is
and the eyes what the object is.

N

Page 84
Higher Order Thinking Skills (H.O.T.S.)

Long Answer Question

20) Name the sense organ other than the eyesthat are used to identify the following objects.

Page 85

A - Curriculum to Learning Objectives: Water

Prior Knowledge		- the use of water for living things, the importance of water, sources of water		
Class	L. No.	Lesson Name	L. Obj. No.	Learning Objectives
3	6	Forms of Water	$6 . a$	- forms of water
			6.b	- the water cycle
			6.c	- changing water forms around us
			6.d	- how salt is got from seawater
4	6	Water Storage and Quality	6.b	- water purification methods
5	4	Floats, Sinks and Mixes	$4 . a$	- the substances that float, sink and mix in liquids
			4.b	- water as a universal solvent
			4.6	- solvents other than water
			4.d	- the effect of heat on solubility

B - Vision-to-Action Plan: 4 Floats, Sinks and Mixes								
Period and Planned Date	TB Page No. and Key Competency	L. Obj. No.	Learning Outcome(s)	Teaching Strategies	Resources	Practice		Areas to Focus
						CW	HW	
1 DD/MM/YYYY	$\begin{gathered} \text { 13, } 14 \text { - THK, } \\ \text { REM } \end{gathered}$	4.a	- Define 'solute', 'solvent' and 'solution'	- Real-life Connect	- a glass of water - sugar	-	-	
2 DD/MM/YYYY	$\begin{aligned} & 14- \\ & \text { REM } \end{aligned}$	4.a	- Identify the substances that float or sink in water - Check the solubility of certain substances in water	- Interactive Discussion	- two glasses - water - ink or neel - paper - piece of chalk	$\begin{aligned} & \text { WB: Pg. } 14 \\ & \text { (Q. 1-4) } \end{aligned}$	$\begin{aligned} & \text { WB: Pg. } 14 \\ & \text { (Q. 5-7) } \end{aligned}$	
3 DD/MM/YYYY	$\begin{aligned} & 15- \\ & \text { UND } \end{aligned}$	4.b	- Demonstrate that water is a universal solvent	- Real-life Connect	- two glasses - water - cooking oil - salt - sugar	$\begin{aligned} & \text { WB: Pg. } 15 \\ & \text { (Q. 8-11) } \end{aligned}$	WB: Pgs. 15, 16 (Q. 12-14)	
4 DD/MM/YYYY	16 - APP, AF	4.6	- Conclude that water cannot dissolve all substances - Identify solvents other than water	- Real-life Connect	- a glass of water - cooking oil	$\begin{aligned} & \text { WB: Pgs. 16, } \\ & 17 \\ & \text { (Q. 15-17) } \end{aligned}$	$\begin{aligned} & \text { WB: Pg. } 17 \\ & \text { (Q. 18, 19) } \end{aligned}$	

Period and Planned Date	TB Page No. and Key	L. Obj. No.	Learning Outcome(s)	Teaching Strategies	Resources	Practice		Areas to Focus
						CW	HW	
5 DD/MM/YYYY	$\begin{gathered} \text { 16, } 17 \text { - } \\ \text { HOTS } \end{gathered}$	6.d	- Explain the effects of heat on the solubility of substances in water	- Peer Learning Group	- three glasses - hot water - cold water - normal water - sugar - spoon	-	WB: Pg. 18 (Q. 20)	

Annual Day:
$16 / 33$
$1 / 5$
Day:
:---:
13

Important Words

Duration: 1 min

- Today: stir, disappears, dissolves, solute, solvent, syrup, solution, substances

Transactional Tip(s)

Duration: $\mathbf{2 7}$ min

Real-life Connect :

- Select a learner, ask the learner to perform the activity in the 'Think' section and let other learners observe.
- Ask the learners, "What did you see? Do you see any sugar in the water? Where did the sugar go?"
- Based on the activity, describe the terms 'solute', 'solvent' and 'solution'.

Class Pulse Check

Duration: 2 min

1) What is a solution?
2) What do we call substances that dissolve in a solvent?

Annual Day:
$17 / 33$
$2 / 5$
:---:
14

Solvents can dissolve other substances in them. The substances that get dissolved are called solutes. When a solute dissolves in a solvent, a solution is formed.

Try this:

Take a disposable plastic glass. Fill half of it with water. Add a drop
of blue ink or neel (used at home to whiten clothes) in it. What happens to the water in the plastic glass?
It turns blue. The blue ink or neel (solute) dissolves slowly in the water (solvent) to turn it blue (solution).
Do all the things we add to water get dissolved in it?

Try this:

Take a small piece of paper. Put it in water. What happens? It remains near the surface. Stir the water. Does anything happen? No. It remains as it is. Paper does not dissolve in water. It floats on the surface. This is the reason why a paper boat also floats.
Now, put a piece of chalk in a glass of water. What do you see? Does the chalk disappear in water? Does it float on the surface of water? No. It just goes down and settles at the bottom of the glass. The piece of chalk neither floats nor dissolves in water. It sinks in water.

Substances that can dissolve in water are soluble substances. For example, salt, sugar, ink and so on. And ones that do not dissolve are insoluble. For example, wood, stones, sand, eraser, pencil and so on.

Annual Day: $18 / 33$	$\begin{aligned} & \text { Day: } \\ & 3 / 5 \end{aligned}$	Actual Date:	$\begin{gathered} \hline \text { Page(s) } \\ 15 \end{gathered}$

目 Understanding

Like water, oil is also a liquid. Can we dissolve sugar in it? Let us find out.
Take one glass. Add some cooking oil to it. Now, add one spoon of sugar to it and stir. What do you observe? Sugar does not dissolve in oil. It remains at the bottom.

Substances soluble in water may not be soluble in other liquids. As water can dissolve many substances, it is called the universal solvent.

What will happen if we keep on adding any solute to water? Let us find out.

Try this:

Take half a glass of water. Add some salt and stir. Once it gets dissolved, add some more salt. Continue this process.

salt remains undissolved
After some time, the salt you add will remain at the bottom and will not dissolve further. Why is it so? This is because water gets filled with salt. It cannot take up any more salt.
If you add some more water to it and stir, the salt that remained at the bottom will dissolve.

after adding water, salt dissolved

Class Pulse Check

Duration: 2 min

1) Name a substance that dissolves in water.
2) What is known as a universal solvent?

Annual Day:
19/33
$4 / 5$
:---:
16

Important Words

Duration: 1 min

- Last class: liquid, universal solvent, process, undissolved
- Today: wall paints, painters, kerosene, petrol, grease, stained, dry cleaning, fizz, carbon dioxide, pressure

Transactional Tip(s)

Example: oil, stones, some wall paints and so on

Try this:

Take a glass of water. Add some cooking oil to it. What do you see? The water and oil remain separate. They do not mix. The oil floats on the surface of the water.
Have you ever seen painters washing and cleaning their brushes? Do they wash it in water? No. Sometimes, the paint they use does not dissolve in water.

So, they use a solvent like kerosene or petrol to wash away the paint from the brushes.

Have you ever seen your mother giving oil or grease stained clothes for dry cleaning? This is because the oil from the stains is not soluble in water. Some other solvents like petrol is used for dry cleaning. The oil from the stains gets dissolved in it, and the clothes get clean.

를 Amazing Facts

Have you ever wondered, why the soft drinks fizz when we open the lid? These soft drinks have carbon dioxide dissolved in water under pressure. When we open a bottle or a can of soft drinks, the carbon-dioxide gas dissolved in the drink rushes out. This causes the fizz.

fizzing soff drink can

Higher Order Thinking Skills (H.O.T.S.)

We have learnt that we cannot dissolve something in water beyond a limit.
Let us do an activity to understand why.
Take three glasses. Take cold water in the first glass, normal water in the second glass and hot water in the third one. Add one spoon of sugar to each of them. Stir and observe the changes.

Real-life Connect :

- Pick some learners and help them perform the 'Try this' activity given in the 'Application' section.
- Ask the learners, "Does oil dissolve in water? Do you know how painters wash their brushes? Do you know how dry cleaning is done?"
- Inform the learners that water cannot dissolve some substances. Describe the uses of other substances that are used as solvents.
- Explain the 'Amazing Facts’ section as given on pg. 16 of the textbook.

Annual Day: $20 / 33$	Day: $5 / 5$	Actual Date:	$\begin{gathered} \hline \text { Page(s) } \\ 17 \end{gathered}$

The sugar in hot water disappears first. The normal water takes more time. Cold water takes the longest.

In all three glasses, the solvent and the solute are the same. Then why is there a difference in the speed of dissolving?
The difference is due to heat. When water is heated, the heat energy causes the particles to start moving faster. Fast movement of the particles causes them to dissolve faster. Heating solvents like water or milk, allows us to dissolve more quantity of a solute in it.

Important Words
Duration: 1 min

- Last class: wall paints, painters, kerosene, petrol, grease, stained, dry cleaning, fizz, carbon dioxide, pressure
- Today: movement, particles, quantity

Transactional Tip(s)
 Peer Learning - Pair/Group:

Duration: $\mathbf{2 8}$ min

- Form groups of learners. Facilitate the learners to perform the activity given in the 'H.O.T.S.' section.
- Ask the learners, "What do you observe? When did the sugar dissolve faster? When was the speed of dissolving slow?"
- Record the responses using a table and explain the effects of heat on the solubility of substances in water.

Class Pulse Check

1) What causes water particles to start moving faster?

FE-Exit Assessment			
	Suggested questions to test the learning objective(s)	Learning objective(s)	Number of learners who answered correctly
1	What is a solute? (Ans. The substance that gets dissolved in a solvent is a solute.)	Period 1 - the substances that float, sink and mix in liquids	
2	Say true or false: Substances that are soluble in water are soluble in other liquids too. (Ans. false)	Period 3 - water as a universal solvent	
3	What do we use to remove water insoluble paint from the brushes? (Ans. kerosene or petrol)	Period 4 - solvents other than water	
4	What helps in dissolving solutes in a solvent faster? (Ans. heat)	Period 5 - the effect of heat on solubility	

	Handhold Learners	Challenge Learners
Names		
Exam Revision Strategy	Reteach $\square \quad$ Revise \square	Practise \square
App Report	Number	Signature

Page 94

[^2]Page 95

Page 97

(q

Page 98
Short Answer Questions
17) Laura's mother got some oil stains on her silk sari. Can she wash them with water to get them removed? Give a reason for your answer.
Ans. No, she cannot wash the stains with water, because oil is not soluble in water.
So, they will not be removed.
18) What is dry cleaning of clothes?
Ans. Washing clothes using solvents like petrol is called dry cleaning.
Long Answer Question
19) Why do wall painters use liquids like kerosene to clean their brushes?
19) Why do wall painters use liquids like kerosene to clean their brushes?

Ans. Most paint used to paints walls are insoluble in water. So, they use a solvent like

Page 100

B - Vision-to-Action Plan: 5 Fruits and Seeds								
Period and Planned Date	TB Page No. and Key Competency	L. Obj. No.	Learning Outcome(s)	Teaching Strategies	Resources	Practice		Areas to Focus
						CW	HW	
1 DD/MM/YYYY	20, 21 - THK, REM	5.a	- Find out how flowers turn into fruits - List the different types of fruits based on the number of seeds they have	- Real-life Connect	- A4 sheets	WB: Pg. 19 (Q. 1-4)	WB: Pg. 19 (Q. 5-7)	
$\begin{gathered} 2 \\ D D / M M / Y Y Y Y \end{gathered}$	$\begin{aligned} & 21- \\ & \text { UND } \end{aligned}$	5.b	- Define 'germination' - Illustrate the process of germination	- Interactive Discussion	-	WB: Pg. 21 (Q. 12)	-	
3 DD/MM/YYYY	$\begin{gathered} 21,22- \\ \text { UND } \end{gathered}$	5.b	- Identify the need for seed dispersal - Describe the different ways of seed dispersal	- Flipped Classroom	- A4 sheets	WB: Pg. 20 (Q. 8-11)	WB: Pg. 21 (Q. 13, 14)	
4 DD/MM/YYYY	$\begin{aligned} & 22,23- \\ & \text { APP, AF } \end{aligned}$	5.c	- Identify the uses of seeds	- Real-life Connect	- sprouted seeds	WB: Pg. 22 (Q. 15-17)	WB: Pgs. 21, 22 (Q. 18, 19) Ask learners to bring different types of seeds for the next class.	

Period and Planned Date	TB Page No. and Key Competency	L. Obj. No.	Learning Outcome(s)	Teaching Strategies	Resources	Practice		Areas to Focus
						CW	HW	
5 DD/MM/YYYY	$\begin{aligned} & 23- \\ & \text { HOTS } \end{aligned}$	5.d	- Categorise the seeds	- Peer Learning - Group	- different types of seeds	-	WB: Pg. 23 (Q. 20)	

B - Vision-to-Action Plan: 5 Fruits and Seeds								
Period and Planned Date	TB Page No. and Key Competency	L. Obj. No.	Learning Outcome(s)	Teaching Strategies	Resources	Practice		Areas to Focus
						CW	HW	
1 DD/MM/YYYY	20, 21 - THK, REM	5.a	- Find out how flowers turn into fruits - List the different types of fruits based on the number of seeds they have	- Real-life Connect	- A4 sheets	WB: Pg. 19 (Q. 1-4)	WB: Pg. 19 (Q. 5-7)	
$\begin{gathered} 2 \\ D D / M M / Y Y Y Y \end{gathered}$	$\begin{aligned} & 21- \\ & \text { UND } \end{aligned}$	5.b	- Define 'germination' - Illustrate the process of germination	- Interactive Discussion	-	WB: Pg. 21 (Q. 12)	-	
3 DD/MM/YYYY	$\begin{gathered} 21,22- \\ \text { UND } \end{gathered}$	5.b	- Identify the need for seed dispersal - Describe the different ways of seed dispersal	- Flipped Classroom	- A4 sheets	WB: Pg. 20 (Q. 8-11)	WB: Pg. 21 (Q. 13, 14)	
4 DD/MM/YYYY	$\begin{aligned} & 22,23- \\ & \text { APP, AF } \end{aligned}$	5.c	- Identify the uses of seeds	- Real-life Connect	- sprouted seeds	WB: Pg. 22 (Q. 15-17)	WB: Pgs. 21, 22 (Q. 18, 19) Ask learners to bring different types of seeds for the next class.	

Period and Planned Date	TB Page No. and Key Competency	L. Obj. No.	Learning Outcome(s)	Teaching Strategies	Resources	Practice		Areas to Focus
						CW	HW	
5 DD/MM/YYYY	$\begin{aligned} & 23- \\ & \text { HOTS } \end{aligned}$	5.d	- Categorise the seeds	- Peer Learning - Group	- different types of seeds	-	WB: Pg. 23 (Q. 20)	

Annual Day:
$21 / 33$
Day:
$1 / 5$
Actual Date:
Page(s)
20

Important Words

Duration: 1 min

- Today: backyard, sprouted, litter, buried, produce, develop, seeds, fleshy, nutritious

Transactional Tip(s)

Duration: $\mathbf{2 7}$ min

Real-life Connect :

- Ask learners to read the situation given in the 'Think' and 'Remembering' sections.
- Ask the learners, "How did the baby plant come out of the soil?"
- Discuss flowers, fruits and seeds and the development of new plants from seeds. Explain how flowers develop into fruits and seeds. Also, explain how fruits and seeds vary in size, shape and colour.
- On the A4 sheets provided ask learners to draw four columns - no seeds, one seed, few seeds and many seeds
- Let learners write the names of a few common fruits based on the number of seeds they contain.

Class Pulse Check

Duration: 2 min

1) Name any one fruit that has many seeds.
2) Name a fruit that does not have any seed.

Annual Day:
$22 / 33$
$2 / 5$
:---:
Page(s)
21

Most of the plants around us produce

 flowers. Most of these flowers develop into fruits with the help of insects and birds. For example, most mango flowers change into mangoes. Pomegranate flowers change into pomegranates.

Most fruits contain seeds inside them. Some have only one seed, while some fruits have a few seeds. There are some fruits that have many seeds, while some other fruits do not have any seeds. You might have seen grapes without seeds. Some fruits have seeds outside them. For example, cashew has a seed outside the fruit.

Like fruits, seeds also vary in shape, size and colour. Most of the fruits are fleshy, tasty and nutritious. So, animals, birds and humans use them as food.

Seeds can form new plants. When a seed grows into a new plant, it is called germination.

A seed needs soil, air, water and nutrients to germinate. How does a seed reach the soil? When the fruits are ripe, they fall off from the plant. After a few days, the fruit may decay or dry up, and the seeds get exposed. Have you seen ripe mangoes fall from the tree?
germination of a seed
What will happen if all the seeds fall below the tree and germinate there? They will not have enough space to grow. The nutrients in the soil will not be enough for all of them to grow. So, seeds of plants need to be spread to different places. This spreading of seeds from the plants is known as the dispersal of seeds.

How does this dispersal take place?
1 Wind: Some seeds are wind. For example, seed of dandelion plants. Have you seen any fluffy seeds gliding in the air?

2 Water: Seeds of the plants like lotus 2 or coconut, which grow in or around water bodies are dispersed by water. These type of seeds float on water.

Annual Day:
$23 / 33$
$3 / 5$
:---:
Page(s)
21

Most of the plants around us produce flowers. Most of these flowers develop into fruits with the help of insects and birds. For example, most mango flowers change into mangoes. Pomegranate flowers change into pomegranates.

Most fruits contain seeds inside them. Some have only one seed, while some fruits have a few seeds. There are some fruits that have many seeds, while some other fruits do not have any seeds. You might have seen grapes without seeds. Some fruits have seeds outside them. For example, cashew has a seed outside the fruit.

Like fruits, seeds also vary in shape, size and colour. Most of the fruits are fleshy, tasty and nutritious. So, animals, birds and humans use them as food.

a pomegranate flower developing into a fruit图

Understanding

Seeds can form new plants. When a seed grows into a new plant, it is called germination.

A seed needs soil, air, water and nutrients to germinate. How does a seed reach the soil? When the fruits are ripe, they fall off from the plant. After a few days, the fruit may decay or dry up, and the seeds get exposed. Have you seen ripe mangoes fall from the tree?
germination of a seed
What will happen if all the seeds fall below the tree and germinate there? They will not have enough space to grow. The nutrients in the soil will not be enough for all of them to grow. So, seeds of plants need to be spread to different places. This spreading of seeds from the plants is known as the dispersal of seeds.

How does this dispersal take place?
1 Wind: Some seeds are wind. For example, seeds of dandelion plants. Have you seen any fluffy seeds gliding in the air?

2 Water: Seeds of the plants like lotus 2 or coconut, which grow in or around water bodies are dispersed by water. These type of seeds float on water.

Important Words

Duration: 1 min

- Last class: variety, surroundings, scrapbook, tags, sample
- Today: dispersal, wind, dandelion, gliding, fluffy, water bodies, wander, droppings, explosion, moisture, warmth, plantlets

Transactional Tip(s)

Duration: $\mathbf{2 7}$ min

Flipped Classroom:

- Ask the learners, "Have you seen any fluffy seeds gliding in the air? Why do those seeds have such fluffy structures on them?"
- Group learners and distribute A4 size sheets. Assign one seed dispersal mechanism to each group. Let them read the content given on pgs. 21, 22 of the textbook, prepare notes and present the different ways of seed dispersal.
- Using a mind map summarise the need for seed dispersal and the different ways of seed dispersal with examples.

Class Pulse Check

Duration: $\mathbf{2}$ min

1) Name any one seed dispersed by water.
2) Name a plant whose seeds are dispersed through fruit explosion.

Annual Day:
$24 / 33$
:---:
$4 / 5$
:---:
22

3 Animals: Seeds of some plants are sticky. They get
attached to the body of animals. When these animals wander from one place to another, the seeds attached to their bodies may fall off at different places. For example, grass seeds.
Some birds eat fruits. Sometimes seeds fall off accidentally from their beaks. Birds may also spit the seed after eating the fruit. And sometimes, seeds reach the soil through bird droppings. Animals like bats are also involved in the dispersal of seeds of the banyan and guava trees.
Human beings also help in the dispersal of seeds. For example, seeds get stuck to the clothes and shoes of farmers and are dispersed.

birds eat frults, and disperse the seeds hrough their beak and droppings

4 Explosion: Seeds of some plants are dispersed by fruit explosion. For example, ladies' fingers and mustard.

ladies' fingers explode to disperse the seeds

After dispersal, seeds reach the soil. In the soil, they germinate and turn into a new plant.

Let us see how:
Seeds need moisture, air and the right amount of warmth to germinate and grow. Until they have these conditions, the seeds do not sprout. Once the seeds get the right conditions, they turn into plantlets. They then grow into big plants.

ta

Application

We have learnt that new plants grow from seeds.
If we observe a sprouting seed, we can see that the sprout does not have roots. Then, from where does it get the nutrients to grow?
The small plant absorbs the food from within the seed till it develops roots. Seeds have food stored inside them.

Due to this, we also use different types of seeds as our food. Let us see some uses of seeds

1) Cereals, pulses and sprouts that we use are the seeds of plants. For example, rice, moong, chana and so on. You may have seen sprouts. They are the germinated pulses.
2) The nuts we eat are the seeds of plants. For example, groundnut, cashew nut and so on.
3) Some of the spices we use are the seeds of plants. For example, pepper
4) We extract oil from groundnut, mustard, coconut and other such seeds.

Important Words

- Last class: germination, ripe, decay, exposed
- Today: absorbs,, cereals, pulses, sprouts, extract, spice, nuts, oilseed, nutrients, giant

Transactional Tip(s)

Real-life Connect :

- Show images of seeds given on pg. 23 of the textbook and also show some sprouted seeds to the learners.
- Ask learners, "Can you see the roots in them? From where does this new baby plant get nutrition to grow?"
- Explain that seeds store food, so they are used as food by us and animals.
- Splash names of some seeds on the blackboard and ask the learners to give their uses.
- Read out the 'Amazing Facts' section on pg. 23 of the textbook.

Class Pulse Check

Duration: $\mathbf{2}$ min

1) Name any one seed that is used to extract oil.
2) Name any one pulse.

Annual Day:
$25 / 33$
$5 / 5$
Day:
Actual Date:
Page(s)
23

Important Words
Duration: 1 min

- Last class: absorbs,, cereals, pulses, sprouts, extract, spice,
nuts, oilseed, nutrients, giant
- Today: variety, surroundings, scrapbook, tags, sample

Transactional Tip(s)
 Peer Learning - Pair/Group:

Duration: $\mathbf{2 9}$ min

- Form groups of learners.
- Let them do the activity given in the 'H.O.T.S.' section with the seeds brought by them from their homes.
- Ask them to note down their findings in a table according to the procedure of the activity.
- After the activity let all the groups present their findings to the class.

Class Pulse Check

1)

P C - Exit Assessment			
	Suggested questions to test the learning objective(s)	Learning objective(s)	Number of learners who answered correctly
1	What develops into a fruit? (Ans. flower)	Period 1 - fruits and seeds	
2	What is spreading of seeds called? (Ans. seed dispersal)	Period 3 - the dispersal and germination of seeds	
3	Say true or false: We extract oil from sprouts. (Ans. false)	Period 4 - uses of seeds	
4	Say right or wrong: All seeds have the same shape, size and colour. (Ans. wrong)	Period 5 - the collection of seeds	

Page 110
Lesson 5: Fruits and Seeds

[^3]

Page 112
Short Answer Question
7) Why do we use most of the fruits as food?
Ans. Most of the fruits are fleshy, tasty and nutritious. So, we use them as food.
园 Understanding
Match the Following

$\stackrel{\rightharpoonup}{\square}$
ส
8)

dispersal of seeds by birds

Short Answer Questions
12) What is gemination?
Ans. The process by which a seed grows into a new plant is called gemination.

13)	How are human beings involved in the dispersal of seeds?
Ans.	Seedsget stuck to the clothes and shoes of farmers and a re dispersed. In this way,
	humansare involved in dispersal of seeds.
Long	Answer Question
14)	Expla in how the a nimals in the given picture are involved in the dispersal of seeds.

Ans. a) Fruit seeds may accidenta lly fall off from their beaks.
b) Sometimes birds spit the seed after eating the fruit.
c) Seeds may reach the soil through bird droppings.
$\frac{\text { d) Seeds may stick to an animal's body and fall off at different places when the animal }}{\text { wanders. }}$
wa nders.

18)
Why do we use different types of seeds as our food?
Ans. Seedshave food stored inside them. So, we use different types of seeds as our food.
Ans. Seeds have food stored inside them. So, we use different types of seeds as our food.

先

A - Curriculum to Learning Objectives: Plants				
Prior Knowledge		- uses of plants, different places where plants grow		
Class	L. No.	Lesson Name	L. Obj. No.	Learning Objectives
3	9	Stems and Leaves	9.a	- different types of stems and leaves
			9.b	- functions of stems and leaves
			$9 . \mathrm{c}$	- uses of stems and leaves
			9.d	- why plants shed leaves
4	8	Roots and Flowers	8.a	- roots and flowers
			8.b	- functions of roots and flowers
			$8 . \mathrm{c}$	- uses of roots and flowers
			8.d	- seasonal flowers
5	5	Fruits and Seeds	5.b	- the dispersal and germination of seeds
5	6	Plants and Environment	6.a	- habitats and habits of plants
			6.b	- adaptations of plants
			$6 . c$	- protection of plant environments
			6.d	- sacred groves

B - Vision-to-Action Plan: 6 Plants and Environment								
Period and Planned Date	TB Page No. and Key Competency	L. Obj. No.	Learning Outcome(s)	Teaching Strategies	Resources	Practice		Areas to Focus
						CW	HW	
1 DD/MM/YYYY	$24-$ THK, REM	6.a	- Define 'habitat' - Recognise different terrestrial habitats	- Real-life Connect	-	-	-	
2 DD/MM/YYYY	$\begin{aligned} & 25- \\ & \text { REM } \end{aligned}$	6.a	- Describe various aquatic plants - Describe how plants differ according to their food habits	- Real-life Connect	-	WB: Pg. 24 (Q. 1-4)	WB: Pgs. 24, 25 (Q. 5-7)	
3 DD/MM/YYYY	$\begin{gathered} 25,26- \\ \text { UND } \end{gathered}$	6.b	- Define 'adaptations' - Describe the adaptations of terrestrial plants	- Real-life Connect - Flipped Classroom	- A4 sheets	WB: Pg. 25 (Q. 8-11)	-	
4 DD/MM/YYYY	$\begin{gathered} 26,27- \\ \text { UND } \end{gathered}$	6.b	- Analyse the adaptations of aquatic plants - Analyse the adaptations of plants according to food habits	- Interactive Discussion	- video of an insectivor ous plant trapping insects	WB: Pg. 26 (Q. 14)	WB: Pg. 25 (Q. 12, 13)	
5 DD/MM/YYYY	$\begin{gathered} \text { 25-27- } \\ \text { UND } \end{gathered}$	6.b	- Reinforce the concept of adaptations of plants according to their habitat	- Peer Learning Group	- chart papers cut to resemble flash cards	-	-	

Period and Planned Date	TB Page No. and Key Competency	L. Obj. No.	Learning Outcome(s)	Teaching Strategies	Resources	Practice		Areas to Focus
						CW	HW	
6 DD/MM/YYYY	27, 28 APP, AF, HOTS	$\begin{aligned} & \text { 6.c, } \\ & \text { 6.d } \end{aligned}$	- Identify how plants support their environment - Analyse the effects of human activities on the environment and measures taken by the government - Analyse the need for 'sacred groves' and 'Vanamahotsava'	- Interactive Discussion	-	$\begin{aligned} & \text { WB: Pgs. 26, } \\ & 27 \\ & \text { (Q. 15, 16) } \end{aligned}$	WB: Pgs. 27, 28 (Q. 17-20)	

Annual Day:
$26 / 33$
$1 / 6$
:---:
24

Important Words

Duration: 1 min

- Today: drooped, habitats, terrestrial plants, swampy, coastal

Transactional Tip(s)

Duration: $\mathbf{2 8}$ min

Real-life Connect :

- Read aloud the 'Think' section to the learners. Ask them, "Have you seen a lotus plant? Where does it grow?"
- Explain the terms 'habitat' and 'terrestrial plants'.
- Show images of habitats on pg. 24 of the textbook.
- Ask the learners, "What do you think about the climate of this habitat? What type of plants do you think are found here?"
- Let the learners recognise the habitats and the type of plants found there.
- Capture learners' responses on the blackboard. Elaborate on different terrestrial habitats.

Class Pulse Check
Duration: 1 min

1) Name any one area where we can find terrestrial plants.

Annual Day:
$27 / 33$
$2 / 6$
:---:
Page(s)
25

Important Words

Duration: 1 min

- Last class: drooped, habitats, terrestrial plants, swampy, coastal
- Today: aquatic plants, floating plants, fixed plants, underwater plants, water lettuce, water hyacinth, wax coated, rotting, tape grass, tape grass, parasitic plants, insectivorous plants, pitcher plant, venus flytrap

Transactional Tip(s)

Duration: $\mathbf{2 7}$ min

Real-life Connect :

- Show the images of water lettuce, lotus and seagrass on pg. 25 of the textbook to explain the term 'aquatic plants.'
- Draw a tree diagram on the blackboard to illustrate the different types of aquatic plants and their features.
- Ask the learners, "How do most green plants make their food? Do all plants make their food? Have you seen plants that eat insects?"
- Mention about plants that make their food, parasitic plants and insectivorous plants. Show the images of the cuscuta plant and pitcher plant on pg. 25 of the textbook.

Annual Day:
$28 / 33$
:---:
$3 / 6$
:---:
26

Important Words

Duration: 1 min

- Last class: aquatic plants, floating plants, fixed plants, underwater plants, water lettuce, water hyacinth, wax coated, rotting, tape grass, parasitic plants, insectivorous plants, pitcher plant, venus flytrap
- Today: features, characteristics, adaptations, conical, needle-shaped, fleshy, spines, extensive, clayey soil, breathing roots, sturdy, flexible

Transactional Tip(s)

Duration: $\mathbf{2 7}$ min

Flipped Classroom:

- Form groups, provide A4 sheets and assign a different adaptation of terrestrial plants to each group. Let the learners in the groups read, discuss and note the points. Let the groups present the topics to the class.
- Summarise the adaptations of terrestrial plants by comparing the parts of plants of different habitats.

Real-life Connect :

- Ask the learners, "Why do lotus plants not grow outside water? Why does a rose plant not grow in water?"
- Relate the discussion to adaptation, and explain the term.

Class Pulse Check

Duration: 2 min

1) Name a desert plant.
2) What type of soil do swampy areas have?

ADAPTATION OF PLANTS ACCORDING TO FOOD HABITS
Plants which produce food have green leaves and a well developed root system. Leaves are positioned in such a way that they receive maximum sunlight.

Insectivorous plants have special structures to trap and digest insects. For example, the pitcher plant has a pitcher (pot-like structure) with a flap. The flap produces nectar that attracts insects. The rim of the pitcher is slippery. So the insects slip inside. The pitcher is deep. Moreover, the inside wall is difficult to climb. So the insects drown and dissolve in the liquid present inside the pitcher.

Application

Plants benefit from their environment. Environment provides all the necessary support to the plants.
HOW DO PLANTS SUPPORT THEIR ENVIRONMENT?

Parasitic plants have special roots. Using these roots, they absorb the they absorb the food and water from other plants. cuscuta is
such plant.

insect on the rim of the

 rim of th pitcherinsect trapped
inside the pitcher
In the process of photosynthesis, plants:

- take in carbon dioxide gas from the air.
- release oxygen.
- trap the energy of the Sun (light energy).
- trap nutrients from the soil.
Roots hold the soil firmly which helps to:
- prevent soil erosion.
- conserve water.

Plants support wildlife by providing shelter.

27
Annual Day:
$30 / 33$
Day:
Actual Date:
Page(s)
27

ADAPTATION OF PLANTS ACCORDING TO FOOD HABITS

Plants which produce food have green leaves and a well developed root system. Leaves are positioned in such a way that they receive maximum sunlight.

Insectivorous plants have special structures to trap and digest insects. For example, the pitcher plant has a pitcher (pot-like structure) with a flap. The flap produces nectar that attracts insects. The rim of the pitcher is slippery. So the insects slip inside. The pitcher is deep. Moreover, the inside wall is difficult to climb. So the insects drown and dissolve in the liquid present inside the pitcher.

Parasitic plants have special roots. Using these roots, they absorb the food absorb the food and water from other plants. Cuscuta is
such plant.

Plants benefit from their environment. Environment provides all the necessary support to the plants. HOW DO PLANTS SUPPORT THEIR ENVIRONMENT?
In the process of photosynthesis, plants:

- take in carbon dioxide gas from the air.
- release oxygen.
- trap the energy of the Sun (light energy).
Roots hold the soil firmly which helps to:
- prevent soil erosion.
- conserve water.

Plants support wildlife by providing shelter.

Annual Day:
$31 / 33$
$6 / 6$
:---:
Actual Date:
28

HOW DO HUMAN ACTIVITIES AFFECT THE ENVIRONMENT?

- Due to human activities, the natural environment of plants is being destroyed. Humans cut down trees for firewood, timber, medicinal purposes and many more. This has destroyed the natural habitats of plants and animals.
- Some plants we see around have been introduced in our country from distant places. Some such introduced plants spread rapidly destroying the environment of other local plants by competing for soil, water, nutrients and sunlight. For example, Iantana

WHAT MEASURES ARE BEING TAKEN BY THE GOVERNMENT?
Due to the cutting of trees, some trees have disappeared from the Earth. Some trees may disappear if we don't protect them. So, they are given protection by the government. Example: sandalwood tree, Malabar mahogany, talipot palms, soap nut tree.

soap nut tree

Amazing Facts

The General Sherman Redwood tree in California is about 2300-2700 years old.

Higher Order Thinking Skills (H.O.T.S.)

Why do we celebrate Vanamahotsava? It is a yearly tree-planting movement in India. It began in 1950. It means the 'festival of trees'. It is celebrated to create awareness about forest conservation and planting trees.

Another practice has also been followed since olden days to conserve trees. Some small forest areas are worshipped and protected by different communities. These areas are called sacred groves. Find out more about sacred groves.

sacred groves

Important Words

Duration: 1 min

- Last class: spongy, waxy, air pockets, slender, flap, nectar, rim, slippery
- Today: photosynthesis, carbon dioxide, oxygen, trap, light energy, nutrients, erosion, conserve, wild life, firewood, timber, medicinal, lantana, government, Malabar mahogany, talipot palm, vanamahotsava, awareness, conservation, worshipped, communities, sacred groves

Transactional Tip(s)

Duration: $\mathbf{2 7}$ min

Interactive Discussion:

- Ask the learners, "What are the uses of plants in the environment?"
- Use a star diagram to list the importance of plants to humans, animals and for maintaining environmental balance.
- Describe the effects of human activities on the environment. Talk about the introduction of distant species such as the lantana. Show the image for the same.
- Show the images of 'talipot palms' and 'soap nut tree' and talk about the measures taken by the government to protect them.
- Explain the 'Amazing Facts' content given on pg. 28 of the textbook.
- Show visuals of 'Vanamahotsava' and 'sacred groves'. Ask the learners "Have you visited a sacred grove or attended a Vanamahotsava?"
- Ask the learners to share their experiences or you may share your experiences about activities during Vanamahotsava.
- Explain the relevance of 'Vanamahotsava' and 'sacred groves' in protection of trees.

Class Pulse Check

Duration: 2 min

1) Name any one protected plant.
2) How do plants support wildlife?

PC-Exit Assessment			
	Suggested questions to test the learning objective(s)	Learning objective(s)	Number of learners who answered correctly
1	Define terrestrial plants. (Ans. Plants that grow on land are called terrestrial plants.)	Period 1 - habitats and habits of plants	
2	Why is it difficult for an insect to come out of the pitcher of a pitcher plant? (Ans. because the pitcher is deep and its walls are difficult to climb up)	Period 4 - adaptations of plants	
3	Why do humans cut trees? Give any two reasons. (Ans. firewood/timber/medicinal purposes)	Period 6 - protection of plant environments	
4	Why is Vanamahotsava important? (Ans. to create awareness about forest conservation and tree plantation)	Period 6 - sacred groves	

Page 126

Lesson 6: Plants and Environment

[^4]\[

$$
\begin{aligned}
& \text { Higher Order Thinking Skills (H.O.T.S.) } \\
& \text { 1) } \quad \text { Find out more about sacred groves. } \\
& \text { Ans. } \begin{array}{l}
\text { Sacred groves are patches of forests dedicated to a local God. People are not allowed } \\
\text { to cut trees, plants or kill animals and birds belonging to this area. A sacred grove was a } \\
\text { method of saving the forest in olden times when laws were not present. Hariyali, in } \\
\text { Uttarakhand, is one of the largest sacred groves in India. }
\end{array} .
\end{aligned}
$$
\]

> 6) Give an example of an underwater plant.
Ans. Sea grass, tape grass (any one)

Short Answer Questions

12) How do fixed aquatic plants adapt to the surroundings?
Ans. Fixed aquatic plants have broad leaves. The leaves have a waxy layerthat prevents the
$\begin{array}{ll} & \begin{array}{l}\text { rotting of leaves due to water. } \\ \text { 13) Why do parasitic plants have special roots? } \\ \text { Ans. }\end{array}\end{array}$
Long Answer Question
13) Categorise the following plants according to their food habits. Also, match the type of plant with their adaptations by drawing lines.

$$
\begin{array}{cc}
\text { Name of the plant } \quad \begin{array}{c}
\text { Type of plant (plant that produce } \\
\text { food, parasitic, insectivorous) }
\end{array} \quad \text { Adaptations }
\end{array}
$$

a)

-

.

Multiple Choice Questions

15) How is the natural environment of plants being destroyed?
(B) due to nutrients
(D) due to sunlight
(C) due to fertilised soil
$\stackrel{8}{1}$

Page 130
Which of the following plant is given protection by the govemment?

$\underset{-}{0}$
16) Which of the following plant is given protection by the govemment?

(A) neem	(B) talipot palm

(C) banana
Short Answer Questions
17) Why do some plants need protection by the govemment?
Ans. People cut plants for timber and firewood. Some plants may disappear if we do not
protect them. Hence, govemment has decided to protect some plants.
18) How do some plants that are introduced from other places destroy the environment?
Ans. Some plantsthat are introduced from other places grow rapidly. They affect the
growth of local plants by competing for soil, water, nutrients and sunlight.
Long Answer Question
19) How do human activities destroy the environment?
Ans. Leamers response (Hint Human activities destroy the environment as follows:

- Humans cut trees for wood, thus decreasing the number of trees.

Page 131

- Excessive use of chemical fertilisers, harmful chemicals from factories degrade the
- $\begin{array}{l}\text { soil affecting the growth of plants. }\end{array}$
Decrease in number of plants affects the a nimals which depend on them.)
HigherOrderThinking Skills (H.O.T.S.)

[^5]
Vanamahotsava

Leamer's response

(Hint Vanamahotsava wasstarted in 1950 in India. It is a yearly movement. Sacred
groves are worshipped since olden times. Vanama hotsava involves planting trees
and creating awareness a bout forest conservation. Sacred groves are small forests worshipped and protected by different communities.)
둔

Annual Day:
$32 / 33$
$1 / 2$
:---:
Page(s)
18

Activity A1: Respiratory System

You will need:
three balloons, scissors, knife, a large plastic bottle, two straws (that can be bent), clay and a rubber band

You need to:

1) bend the straws at an angle.
2) insert the bent ends of the straws inside the balloons as shown in step 2 . Secure them using the duct tape.
3) attach the straws to each other forming a ' Y ' shape as shown in step 3.
4) add a ball of clay around the straight ends of the straws, leaving the holes of the straws open as shown in step 4.
5) place the straws into a bottle, and secure the clay around the opening of the bottle as shown in step 5.
6) cut the bottom of the bottle as shown in step 6. Cut off the neck of a balloon. Stretch the balloon to cover the bottom of the bottle and secure it with a rubber band. (The teacher should help the student while cutting.)
7) blow air into the straws. What do you see? When the air comes out from the bottle, what do you see?
The balloons in the bottle act as lungs, and the balloon that is stretched acts as a diaphragm.
When you blow air into the balloons, they expand. When the air comes out of the balloon they return to their normal size. This is how we inhale oxygen and exhale carbon dioxide.

Important Words

Duration: 1 min

- Today: respiratory system, angle, duet tape, stretch, blow, lungs, diaphragm, inhale, exhale

Transactional Tip(s)

Duration: $\mathbf{2 9} \mathbf{~ m i n}$

Reinforcement :

- Revisit the different parts of the respiratory system.
- Note the organs of the respiratory system on the blackboard to reinforce the positions and names of the organs.
- Construct a working model of the respiratory system and demonstrate its functions according to the instructions given.
(Note: If learners are allowed to do the activity, all cutting work needs to be done by the teacher.)

| Annual Day: |
| :---: | :---: |
| $33 / 33$ |
| $2 / 2$ |
| Actual Date: |
| Page(s) |
| 19 |

Important Words
Duration: 1 min

- Last class: respiratory system, angle, duet tape, stretch, blow, lungs, diaphragm, inhale, exhale
- Today: universal, solvent, dissolves, substances, baking, soda, pepper, teaspoon, stir, record, observations

Transactional Tip(s)

Duration: $\mathbf{2 9}$ min

Reinforcement :

- Ask the learners, "Why is water called a universal solvent?"
- Demonstrate the activity according to the instructions given.
- Ask the learners to note down their observations.

Class Pulse Check

1)

Art Integrated Lesson Plans

Grade: Grade 5, FA 1

Subject: Environmental Studies - I

Lesson: Respiratory System

Learning Outcome(s):

- Outlines the process of respiration in humans by making a poster

Integrated Art Form(s):

- Poster making

Materials Required:

Ice-Breaker: NA
Core Activity:

1) Chart papers
2) Colouring materials such as poster colours, paint brush, sketch pens and so on
3) Stationery items

Art Integrated Lesson Plans

Resources (External References):

Iœ-Breaker:

- Introduction to the respiratory system
- Tips on poster making

Core Activity: NA

Time Needed:

Ice-Breaker: 15 min
Core Activity: 60 min

Ice-Breaker:

Summary: Show learners the video clips on introduction to the respiratory system and poster making to set the context for the activity.

Procedure:

Step 1:

- Inform learners that they are going to be shown a video about the parts of the human respiratory system.
- Play the video 'Introduction to the respiratory system'.
- When playing the video, ask them to make a note of the different parts of the respiratory system and carefully examine the role of the respiratory system in the human body.
- Once the video has been played, ask learners to recall the names of the organs of the respiratory system from the video.

Step 2:

- Ask learners if they have ever seen or made any poster.
- Inform learners that they are about to make a poster on the process of respiration in humans.
- Play the video 'Tips on poster making'. Ask learners to pay attention to the important features in a poster.

Art Integrated Lesson Plans

Core Activity:

Summary: Facilitate a group activity where learners make a poster on the processes involved in respiration in humans.

Procedure:

- Divide the class into groups of four.
- Provide each group with chart paper, stationery items and colouring materials.
- Instruct each group to work together and make a poster outlining the process of respiration.
- Ask learners to make bilingual posters by writing the content of the poster in their regional languages as well as in English.
- Tell learners that they may refer to the information and the pictures given in the textbook for further details.
- Allow each group 40 minutes to make their posters.
- Walk around the classroom and provide guidance to the groups, if needed.
- Once the activity is completed, ask each group to present their posters to the class, one by one.
- Conclude the topic by asking learners some questions on the process of respiration and the exchange of gases during the process.

Extension Activity:

Ask learners to collect further information on the process of respiration and prepare a write-up on an A4 sheet.

Assessment:

Use the Assessment Rubric given to evaluate the learner.

Conclusion:

This activity allows learners to acquire a firm understanding of the process of respiration. It also helps them to interpret the movement of gases involved in respiration. It facilitates collaboration and lets learners exercise higher-order thinking skills to display their creativity.

Art Integrated Lesson Plans

Suggested Rubric for Assessing Art Integrated Learning

	LEVELS	Proficient	Evolving	Beginner	Pre-Beginner
	RATING	4	3	2	1
	Knowledge Construction and Expression	Demonstrates excellent use of inquiry and higher order thinking skills, and accurate representation of arts standards.	Demonstrates good use of inquiry and higher order thinking skills and effective representation of arts standards.	Demonstrates moderate use of inquiry and higher order thinking skills and occasional representation of arts standards.	Demonstrates minimal use of inquiry and higher order thinking skills and little representation of arts standards.
$\begin{gathered} \mathbf{P} \\ \mathbf{A} \\ \mathbf{R} \\ \mathbf{A} \\ \mathbf{M} \\ \mathbf{E} \\ \mathbf{T} \\ \mathbf{E} \\ \mathbf{R} \\ \mathbf{S} \end{gathered}$	Collaboration	Participates proactively in community building through collaborative work, and always communicates well within team(s) and with the facilitator.	Participates actively in community building through collaborative work, and mostly communicates within team(s) and with the facilitator.	Participates moderately in community building through collaborative work, and occasionally communicates within team(s) and with the facilitator.	Participates rarely in community building through collaborative work, and hardly communicates within team(s) and with the facilitator.
	Envisioning	Engages proactively in rigorous arts integration by embracing change; has multiple perspectives and takes adequate calculated risks.	Engages actively in arts integration by accepting change; has some perspectives and takes some calculated risks.	Engages moderately in arts integration by accepting few changes; has few perspectives and takes few calculated risks.	Engages rarely in arts integration; has minimal perspectives and hardly takes risks.
	Art and Content Integration	Displays a clear connect between the arts and learning outcomes.	Displays an acceptable connect between the arts and learning outcomes.	Displays a moderate connect between the arts and learning outcomes.	Displays a rare connect between the arts and learning outcomes.
	Self-Assessment	Demonstrates significantly increased awareness of relevance and purpose of the arts integration process.	Demonstrates increased awareness of relevance and purpose of the arts integration process.	Demonstrates occasional awareness of relevance and purpose of the arts integration process.	Demonstrates rare awareness of relevance of the arts integration process.

Art Integrated Lesson Plans

Grade: Grade 5, FA 2

Subject: Environmental Studies - I

Lesson: Floats, Sinks and Mixes

Learning Outcome(s):

- Classifies substances based on their solubility in water
- Demonstrates that water is a universal solvent using recorded videos of experiments

Integrated Art Form(s):

- Video making

Materials Required:

Ice-Breaker: NA
Core Activity:

1) Cameras or mobile phones with good camera quality
2) Samples of water-soluble and insoluble substances (For example, salt, sugar, sand, ink, wood shavings or wood powder, flour and so on)
3) Glass tumblers or plastic jars
4) Water
5) Oil

Art Integrated Lesson Plans

6) Spoons
7) Stirring rods
8) Sketch pens

Resources (External References):

Iœ-Breaker:

- Solute, solvent and solution

Core Activity: NA

Time Needed:

Ioe-Breaker: 10 min
Core Activity: 70 min

Ice-Breaker:

Summary: Show learners a video of an experiment on solute, solvent and solution to set the context for the activity.

Procedure:

- Inform learners that they are going to watch a video recording of a scientific experiment.
- Instruct them to carefully observe the introduction part in the video and the way the experiment is being performed.
- Inform them that they have to record videos of scientific experiments in a similar way.
- Play the video 'Solute, solvent and solution'.
- Once the video is over, ask learners what they learnt from the video. Encourage them to actively participate in this discussion.

Art Integrated Lesson Plans

Core Activity:

Summary: Drive a group activity in which learners perform experiments to test the solubility of different substances in water and to demonstrate that water is a universal solvent, and make videos of the same.

Procedure:

Step 1:

- Divide the class into groups of four. (Note: If the class has learners from different regions or states, learners who speak the same regional language can be grouped together.)
- Distribute the materials to conduct the experiments to each group, along with a camera or a mobile phone to record a video of their experiments.
- Inform learners that they are going to perform two experiments, 'Experiment 1 ' to test the solubility of different substances in water and 'Experiment 2' to demonstrate that water is a universal solvent.
- Encourage the groups to explain the experiments in their videos using different languages. For example, ask group 1 to record their videos in English and the other groups to record their videos in their regional or state languages such as Kannada, Tamil, Telugu, Marathi and so on.
- Inform learners that the video for each experiment should not exceed 3 minutes. Allow them 30 minutes to make their videos.
- Help learners plan their videos for both the experiments in the following ways to ensure maximum participation from each learner: a. For the first experiment, one learner records the video, another gives a brief introduction about the experiment, while the other two perform the experiment on solubility.
b. For the second experiment, the learners exchange their roles.
- Ask learners to take some time to prepare the introduction and content for the video.
- Ask learners to refer to the information given in the textbook while planning their experiments.
- Extend help to the groups, when needed.

Art Integrated Lesson Plans

Step 2:

- Once the video recordings have been made, ask each group to show their videos to the class by taking turns.
- Appreciate their efforts and acknowledge how multilingual information can be used by a wide range of audiences.
- Ask learners to name a few soluble and insoluble substances from their experiments.
- Conclude the topic by discussing what a universal solvent is and why water is considered a universal solvent.

Extension Activity:

Ask learners to perform the same experiment using a few other substances, record a video of it and upload it on YouTube with the help of elders. (Note: Uploading the video on YouTube is optional and subject to guardian's approval.)

Assessment:

Use the Assessment Rubric given to evaluate the learner.

Conclusion:

This activity allows learners to classify different substances based on their solubility in water. It also leads them to infer that water is a universal solvent. It helps learners develop their scientific skills through experimentation. It facilitates collaboration and lets learners exercise higher-order thinking skills to display their creativity.

Art Integrated Lesson Plans

Suggested Rubric for Assessing Art Integrated Learning

	LEVELS	Proficient	Evolving	Beginner	Pre-Beginner
	RATING	4	3	2	1
	Knowledge Construction and Expression	Demonstrates excellent use of inquiry and higher order thinking skills, and accurate representation of arts standards.	Demonstrates good use of inquiry and higher order thinking skills and effective representation of arts standards.	Demonstrates moderate use of inquiry and higher order thinking skills and occasional representation of arts standards.	Demonstrates minimal use of inquiry and higher order thinking skills and little representation of arts standards.
P$\mathbf{A}$$\mathbf{R}$$\mathbf{A}$$\mathbf{M}$$\mathbf{E}$$\mathbf{T}$$\mathbf{E}$$\mathbf{R}$$\mathbf{S}$	Collaboration	Participates proactively in community building through collaborative work, and always communicates well within team(s) and with the facilitator.	Participates actively in community building through collaborative work, and mostly communicates within team(s) and with the facilitator.	Participates moderately in community building through collaborative work, and occasionally communicates within team(s) and with the facilitator.	Participates rarely in community building through collaborative work, and hardly communicates within team(s) and with the facilitator.
	Envisioning	Engages proactively in rigorous arts integration by embracing change; has multiple perspectives and takes adequate calculated risks.	Engages actively in arts integration by accepting change; has some perspectives and takes some calculated risks.	Engages moderately in arts integration by accepting few changes; has few perspectives and takes few calculated risks.	Engages rarely in arts integration; has minimal perspectives and hardly takes risks.
	Art and Content Integration	Displays a clear connect between the arts and learning outcomes.	Displays an acceptable connect between the arts and learning outcomes.	Displays a moderate connect between the arts and learning outcomes.	Displays a rare connect between the arts and learning outcomes.
	Self-Assessment	Demonstrates significantly increased awareness of relevance and purpose of the arts integration process.	Demonstrates increased awareness of relevance and purpose of the arts integration process.	Demonstrates occasional awareness of relevance and purpose of the arts integration process.	Demonstrates rare awareness of relevance of the arts integration process.

Art Integrated Lesson Plans

Grade: Grade 5, SA1

Subject: Environmental Studies - I

Lesson: Plants and Environment

Learning Outcome(s):

- Outlines the adaptations in terrestrial and aquatic plants through a collage
- Identifies and names some common terrestrial and aquatic plants

Integrated Art Form(s):

- Collage making

Materials Required:

Ice-Breaker: NA
Core Activity:

1) Printed-out copies of coloured pictures of terrestrial and aquatic plants
2) Illustrations of some indigenous plants of India
3) Chart papers (coloured and white)
4) Sketch pens
5) Glue
6) Scissors

Art Integrated Lesson Plans

Resources (External References):

Ice-Breaker:

- Terrestrial and aquatic plants
- Collage of incredible India

Core Activity: NA

Time Needed:

Ice-Breaker: 20 min
Core Activity: 70 min

Ice-Breaker:

Summary: Show learners videos on terrestrial and aquatic plants and introduce them to collage making to set the context for the activity.
Procedure:

Step 1:

- Tell learners that different plants live in different places or environmental areas.
- Inform learners that they are going to watch a video on the different types of plants based on their habitat.
- Instruct them to carefully observe the structures of different plants.
- Play the video on terrestrial and aquatic plants.
- Once the video is over, ask learners if they can name a few terrestrial and aquatic plants from the video.

Step 2:

- Tell learners that they are going to be shown a tutorial video on collage making.
- Inform learners that they are supposed to make a collage of terrestrial and aquatic plants in class.
- Play the video ‘Collage of incredible India'.
- Instruct learners to pay attention to how the collage is being made, and the steps to create a layout for the collage.

Art Integrated Lesson Plans

Core Activity:

Summary: Facilitate a group activity in which learners make a collage of terrestrial and aquatic plants based on their features and adaptations.

Procedure:

Step 1:

- Divide the class into two groups 'Group A' and 'Group B'. Further divide each of those groups into subgroups of four.
- Distribute the materials for the activity to each sub-group along with the pictures of different plants. (Note: Provide pictures of terrestrial plants to all the subgroups of group A and pictures of aquatic plants to all the subgroups of group B.)
- Display the illustrations of indigenous plants of India in the class.
- Instruct each subgroup to make the layout for their collage by cutting coloured chart papers into the shape of any one indigenous plant of their choice. Remind them that each group has been assigned a specific type of plant (aquatic or terrestrial), and that they must choose a plant shape for their layout accordingly. Supervise them while cutting the chart papers in the required shape.
- Tell learners to paste their layout cut-outs on a white chart paper, and then paste the pictures of plants on the layout to make a collage.
- Instruct learners to write the features or adaptations of the plants on the white chart paper using attractive writing styles.
- Ask learners to refer to the information given in the textbook while summarising the key adaptations of the type of plant allotted to them.
- Allow them 40 minutes to make their collages. Encourage participation from every learner.
- Extend help to the groups, when needed.

Step 2:

- Once the collages are completed, ask each group to present their work, in turns.
- Appreciate their efforts and initiate a discussion on the indigenous plants of India represented in their collage layout.
- Conclude the activity by summarising the adaptations of some well-known terrestrial and aquatic plants.

Art Integrated Lesson Plans

Extension Activity:

Ask learners to observe different plants in their garden/surroundings and list their adaptive features on an A4 sheet.

Assessment:

Use the Assessment Rubric given to evaluate the learner.

Conclusion:

This activity allows learners to outline the adaptations of plants according to their habitat through visual art. It also helps learners to build their skills for comparative study. It facilitates collaboration and lets learners tap into their creativity and presentation skills.

Suggested Rubric for Assessing Art Integrated Learning

Art Integrated Lesson Plans

	LEVELS	Proficient	Evolving	Beginner	Pre-Beginner
	RATING	4	3	2	1
	Knowledge Construction and Expression	Demonstrates excellent use of inquiry and higher order thinking skills, and accurate representation of arts standards.	Demonstrates good use of inquiry and higher order thinking skills and effective representation of arts standards.	Demonstrates moderate use of inquiry and higher order thinking skills and occasional representation of arts standards.	Demonstrates minimal use of inquiry and higher order thinking skills and little representation of arts standards.
P \mathbf{A} \mathbf{R} \mathbf{A} \mathbf{M}	Collaboration	Participates proactively in community building through collaborative work, and always communicates well within team(s) and with the facilitator.	Participates actively in community building through collaborative work, and mostly communicates within team(s) and with the facilitator.	Participates moderately in community building through collaborative work, and occasionally communicates within team(s) and with the facilitator.	Participates rarely in community building through collaborative work, and hardly communicates within team(s) and with the facilitator.
E T E R S	Envisioning	Engages proactively in rigorous arts integration by embracing change; has multiple perspectives and takes adequate calculated risks.	Engages actively in arts integration by accepting change; has some perspectives and takes some calculated risks.	Engages moderately in arts integration by accepting few changes; has few perspectives and takes few calculated risks.	Engages rarely in arts integration; has minimal perspectives and hardly takes risks.
	Art and Content Integration	Displays a clear connect between the arts and learning outcomes.	Displays an acceptable connect between the arts and learning outcomes.	Displays a moderate connect between the arts and learning outcomes.	Displays a rare connect between the arts and learning outcomes.
	Self-Assessment	Demonstrates significantly increased awareness of relevance and purpose of the arts integration process.	Demonstrates increased awareness of relevance and purpose of the arts integration process.	Demonstrates occasional awareness of relevance and purpose of the arts integration process.	Demonstrates rare awareness of relevance of the arts integration process.

How to Create an Effective Learning Environment?

NCF 2022 aims at a chieving a holistic overall transformation of the teaching-lea ming process that will ensure an enjoyable, inclusive and positive overall leaming experience. NCF 2022 asserts that the teacher is at the heart of the practice of educ ation and is the torchbearer of the transformation it envisions for the Indian education system. It also re-emphasises the overall guiding principles of the NEP 2020, some of which include:
a) emphasis on conceptual understanding rather than rote leaming and leaming for examinations,
b) development of 21 st-century skills such as problem-solving, creativity, and critical thinking to encourage logical decisionmaking and innovation
c) respect fordiversity and respect for the local context in curiculum and pedagogy

Here we have outlined some additional pointers that are in alignment with NCF 2022 that we feel will support teachers of environmental studies and science.
"Science is fun!" As adults we know this and even say this, but do our leamers get a sense of this exc itement? At the school level, science comes across as a collection of isolated facts. Truth is, science is the grandest story that human beings have written. Teaching science to primary school leamers is an opportunity to let our future generations marvel at the natural world a round us and at the human effort in understanding and manipulating the world. As long as we keep connecting to this big picture, a big part of our mission asscience teachers gets accomplished. NCF 2022 recommends that a Constructivist approach to science teaching be used at the primary level. But what is 'Constructivism', and how can it be
 practised in the classroom?

Constructivism meansthat science should not be taught asfacts and figuresto be memorised. Instead, leamers should be able to understand how science is a process. In orderforleamers to get involved in the process, developing skills of critical thinking and deduction is necessary.

In order to do this, the 5 E model for teaching science can be followed night from the primary level. This approach has been used in the ClassKlap textbooks as well, so your teaching can naturally follow this approach of Engage, Explore, Explain, Elaborate and Evaluate. Here are the details of this effective method:

1) Engage: Set the concept in a meaningful and relatable context. Thisc reatesan interest in leamers as they are able to see meaning in knowing more about it. Raise questions for inquiry and explore leamers' ideas and beliefs about the concept. If possible, compare leamers' ideas to show different ways of thinking.
2) Explore: Science is something that is experience-based. The most concrete way to ensure leamers understand a concept isto enable them to have an experience. Where possible, try to conduct experiments and observations. This is also the stage where leamerscan be encouraged to raise questions and to test their ideas.
3) Explain: The third stage is of consolidating what the leamers have experienced and connecting it to theoretic al explanations that provide a scientific basis for the concept. This is the stage at which you ensure that all relevant vocabulary is mastered by them. The use of visual aids like charts, diagrams and so on are partic ularly useful now because leamers will be able to make the necessary connections.
4) Eaborate: Next, a llow leamers to a pply or demonstrate their lea ming. Enc oura ge lea mers to represent their understanding of the concept through diagrams, models, flow-charts, mind maps and so on. Leamers' work and ideas will give you an idea about how well they have understood the concept. Provide feedback on misconceptions, if there are any, at this stage.

5) Evaluate: Assess leamers once you have gone through all the other Es. Evaluation need not only be formal. You can conduct informal, formative evaluation through class tests, quizes, surprise tests and classroom questioning in general. Ensure you test factual knowledge, scientific vocabulary as well asconceptual clarity. Providing leamers the opportunity to apply their leaming through projects is a great way of evaluation as well.

If a child can't leam the way we teach, maybe we should teach them the way they leam. - Ignacio Estrada

End-of-Term Reflection

1) Which were the four best performing areas/conceptsforTerm 1 as peryour Teacher Companion Book?
2) \qquad
3) \qquad
4) \qquad
5)

Q 3) Which transactionaltips do you find most useful to remediate the areas/concepts highlighted for improvement?
4) How many periodshave you used to remediate a reas/conceptshighlighted in the TeacherCompanion Book?

Q 2) Which four areas/conceptswere highlighted for improvement asperyour Teac her Compa nion Book?

1) \qquad
2) \qquad
3) \qquad
4)

Q 6) List at least five lea mers who you would like to particula rly support based on inputs from the TeacherCompanion Book.
1)
2) \qquad
3) \qquad
4) \qquad
5)

[^0]: How do muscles help in body movements?
 ubberband

 $$
 \begin{aligned}
 & \text { Long Answer Question } \\
 & \text { 14) Why do we shiver when we feel cold? } \\
 & \text { Ans. Musc les provide heat to our body. When we feel cold, our muscles vibrate ra pidly to }
 \end{aligned}
 $$

 $\underset{\sim}{n}$

[^1]: ## Think Ther
 1) If
 1) If we happen to touch or hold a hot vessel in our hand, what do we do? We let go of it Ans. Our sense of touch tells us if something is hot or cold. So, when our skin touches the hot vessel, our senses tell us that it is hot and our brain tells us to let go of it quickly.

[^2]: 1) Do all the things we add to water get dissolved in it?

 Ans. No, things such as sand and stones do not dissolve in water.

[^3]: 1) Shahid saw a baby mango plant in his backyard. It was not there a few days back. He wondered how the new baby plant came out of the soil. Can you guess?

 Ans. The baby plant grew from the seed that may have come accidentally in the soil from

[^4]: Think

 1) Seema planted a lotus plant in her garden and watered it. But it drooped down and
 dried up within a few days. What can be the reason for this?
 Ans. Different plants grow in different places. The lotus plant grows in water. Hence, when it
 was planted in the garden soil it drooped down and died within a few days.
[^5]: Long Answer Question
 20) Are Vanamahotsava and sacred groves similar? Give rea sons to support your answer.

